【題目】如圖,線段AB兩端點坐標(biāo)分別為A(﹣1,5)、B(3,3),線段CD兩端點坐標(biāo)分別為C(5,3)、D (3,﹣1)數(shù)學(xué)課外興趣小組研究這兩線段發(fā)現(xiàn):其中一條線段繞著某點旋轉(zhuǎn)一個角度可得到另一條線段,請寫出旋轉(zhuǎn)中心的坐標(biāo)________

【答案】

【解析】

分點A的對應(yīng)點為CD兩種情況考慮:當(dāng)點A的對應(yīng)點為點C時,連接AC、BD,分別作線段AC、BD的垂直平分線交于點E,點E即為旋轉(zhuǎn)中心;當(dāng)點A的對應(yīng)點為點D時,連接AD、BC,分別作線段AD、BC的垂直平分線交于點M,點M即為旋轉(zhuǎn)中心此題得解.

當(dāng)點A的對應(yīng)點為點C時,連接AC、BD,分別作線段AC、BD的垂直平分線交于點E,如圖1所示:

點的坐標(biāo)為,B點的坐標(biāo)為

點的坐標(biāo)為;

當(dāng)點A的對應(yīng)點為點D時,連接AD、BC,分別作線段AD、BC的垂直平分線交于點M,如圖2所示:

點的坐標(biāo)為,B點的坐標(biāo)為,

點的坐標(biāo)為

綜上所述:這個旋轉(zhuǎn)中心的坐標(biāo)為

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,AB的垂直平分線DE分別交AB、ACD、E

1)若AC=12BC=10,求EBC的周長;

2)若∠A=40°,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,某乘客乘高速列車從甲地經(jīng)過乙地到丙地,列車勻速行駛,圖②為列車離乙地路程y(千米)與行駛時間x(小時)的函數(shù)關(guān)系圖象.

(1)填空:甲、丙兩地距離_______千米;

(2)求高速列車離乙地的路程y與行駛時間x之間的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,射線OA是第一象限的角平分線,點C11,5),E,F分別是射線OAx軸正半軸的動點,那么FE+FC的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

情形展示:

情形一:如圖,在中,沿等腰三角形ABC的頂角的平分線折疊,若點B與點C重合,則稱的“好角”,如圖,在中,先沿的平分線折疊,剪掉重復(fù)部分,再將余下部分沿的平分線折疊,若點與點C重合,則稱的“好角”.

情形二:如圖,在中,先沿的平分線折疊,剪掉重復(fù)部分,再將余下部分沿的平分線折疊,剪掉重復(fù)部分重復(fù)折疊n次,最終若點與點C重合,則稱的“好角”,探究發(fā)現(xiàn):不妨設(shè)

如圖,若的“好角”,則的數(shù)量關(guān)系是:______

如圖,若的“好角”,則的數(shù)量關(guān)系是:______

如圖,若的“好角”,則的數(shù)量關(guān)系是:______

應(yīng)用提升:

如果一個三角形的三個角分別為,,我們發(fā)現(xiàn)的兩個角都是此三角形的“好角”;如果有一個三角形,它的三個角均是此三角形的“好角”,且已知最小的角是,求另外兩個角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC∠AOB的角平分線,POC上一點.PD⊥OAOAD,PE⊥OBOBEFOC上的另一點,連接DF,EF.求證:DF=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)在圖中畫出△ABC與關(guān)于y軸對稱的圖形△A1B1C1,并寫出頂點A1、B1、C1的坐標(biāo);

(2)若將線段A1C1平移后得到線段A2C2,且A2(a,2),C2(-2,b),求a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里有5個小球,分別標(biāo)有數(shù)字﹣3,﹣2,﹣1,﹣,﹣,這些小球除所標(biāo)的數(shù)不同外其余都相同,先從盒子隨機摸出1個球,記下所標(biāo)的數(shù),再從剩下的球中隨機摸出1個球,記下所標(biāo)的數(shù).

(1)用畫樹狀圖或列表的方法求兩次摸出的球所標(biāo)的數(shù)之積不大于1的概率.

(2)若以第一次摸出球上的數(shù)字為橫坐標(biāo),第二次摸出球上的數(shù)字為縱坐標(biāo)確定一點,直接寫出該點在雙曲線y=上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標(biāo)為,拋物線的對稱軸是下列結(jié)論中:

;方程有兩個不相等的實數(shù)根;拋物線與x軸的另一個交點坐標(biāo)為;若點在該拋物線上,則

其中正確的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

同步練習(xí)冊答案