【題目】一天早上小華步行上學(xué),他離開家后不遠(yuǎn)便發(fā)現(xiàn)數(shù)學(xué)書忘在了家里,于是以相同的速度回家去拿,到家后發(fā)現(xiàn)弟弟把牛奶灑在了地上,就放下手中的東西,收拾好后才離開.為了不遲到,小華跑步到了學(xué)校,則小華離學(xué)校的距離y與時(shí)間t之間的函數(shù)關(guān)系的大致圖象是(

A.B.C.D.

【答案】B

【解析】

根據(jù)題意可得小華步行上學(xué)時(shí)小華離學(xué)校的距離減小,而后離開家后不遠(yuǎn)便發(fā)現(xiàn)數(shù)學(xué)書忘在了家里,于是以相同的速度回家去拿時(shí)小華離學(xué)校的距離增大,到家后發(fā)現(xiàn)弟弟把牛奶灑在了地上,就放下手中的東西,收拾好后才離開距離不變,小華跑步到了學(xué)校時(shí)小華離學(xué)校的距離減小直至為0

解:根據(jù)題意可得小華步行上學(xué)時(shí)小華離學(xué)校的距離減小,而后離開家后不遠(yuǎn)便發(fā)現(xiàn)數(shù)學(xué)書忘在了家里,于是以相同的速度回家去拿時(shí)小華離學(xué)校的距離增大,到家后發(fā)現(xiàn)弟弟把牛奶灑在了地上,就放下手中的東西,收拾好后才離開距離不變,小華跑步到了學(xué)校時(shí)小華離學(xué)校的距離減小直至為0

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,AB=4,BC=5,AC的長(zhǎng)是一元二次方程x2﹣15x+54=0的一個(gè)根.

(1)求AC的長(zhǎng);

(2)在AC上找一點(diǎn)D,連接BD,使△ABD∽△ACB;

(3)以AC為一邊作一個(gè)三角形ACM,求出sinAMC的值.(所作三角形自己設(shè)計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠C90°,ACBCD、E分別在AC、BC上,若∠DBC2BAE,AB4,CD,則CE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c(x為任意實(shí)數(shù))經(jīng)過(guò)下圖中兩點(diǎn)M(1,﹣2)、N(m,0),其中M為拋物線的頂點(diǎn),N為定點(diǎn).下列結(jié)論:

若方程ax2+bx+c=0的兩根為x1,x2(x1<x2),則﹣1<x1<0,2<x2<3;

當(dāng)xm時(shí),函數(shù)值y隨自變量x的減小而減小.

③a>0,b<0,c>0.

垂直于y軸的直線與拋物線交于C、D兩點(diǎn),其C、D兩點(diǎn)的橫坐標(biāo)分別為s、,則s+t=2.

其中正確的是( 。

A. ①② B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線軸分別交于點(diǎn)A和點(diǎn)B,MOB上一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在軸上的點(diǎn)B′處,試求出直線AM的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是“經(jīng)過(guò)圓外一點(diǎn)作圓的切線”的尺規(guī)作圖的過(guò)程.

已知:P為外一點(diǎn).求作:經(jīng)過(guò)P點(diǎn)的切線.作法:如圖,(1)連結(jié)OP;(2)以O(shè)P為直徑作圓,與交于C、D兩點(diǎn).(3)作直線PC、PD.則直線PC、PD就是所求作經(jīng)過(guò)P點(diǎn)的切線.以上作圖的依據(jù)是:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點(diǎn)坐標(biāo)分別為T(1,1),A(2,3),B(3,3),C(4,2).

(1)以點(diǎn)T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來(lái)的2倍,放大后點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為A′,B′,C′畫出四邊形TA′B′C′;

(2)寫出點(diǎn)A′,B′,C′的坐標(biāo):

A′   ,B′   ,C′   ;

(3)(1)中,若D(a,b)為線段AC上任一點(diǎn),則變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案