【題目】規(guī)定:二元一次方程有無數(shù)組解,每組解記為,稱為亮點(diǎn),將這些亮點(diǎn)連接得到一條直線,稱這條直線是亮點(diǎn)的隱線,答下列問題:
(1) 已知,則是隱線的亮點(diǎn)的是 ;
(2) 設(shè)是隱線的兩個(gè)亮點(diǎn),求方程中的最小的正整數(shù)解;
(3)已知是實(shí)數(shù), 且,若是隱線的一個(gè)亮點(diǎn),求隱線中的最大值和最小值的和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與坐標(biāo)軸交于A,B兩點(diǎn),在射線AO上有一點(diǎn)P,當(dāng)△APB是以AP為腰的等腰三角形時(shí),點(diǎn)P的坐標(biāo)是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中, 的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)的坐標(biāo)分別為、、,試解答下列問題:
(1)畫出關(guān)于原點(diǎn)對稱的;
(2)平移,使點(diǎn)移到點(diǎn),畫出平移后的并寫出點(diǎn)、的坐標(biāo);
(3)在、、中, 與哪個(gè)圖形成中心對稱?試寫出其對稱中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備租用一批汽車去韶山研學(xué), 現(xiàn)有甲、乙兩種大客車,甲種客車每輛載客量人,乙種客車每輛載客量人.已知輛甲種客車和輛乙種客車需租金元,輛甲種客車和輛乙種客車共需租金元.
(1)求輛甲種客車和輛乙種客車的租金分別是多少元?
(2)學(xué)校計(jì)劃租用甲、乙兩種客車共輛,送名師生集體外出活動(dòng),總費(fèi)用不超過元,則共有哪幾種租車方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連結(jié)OE.下列結(jié)論:
①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的結(jié)論有______.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖a,已知長方形紙帶ABCD,AB∥CD,AD∥BC,∠BFE=70°,將紙帶沿EF折疊后,點(diǎn)C、D分別落在H、G的位置,再沿BC折疊成圖b.
(1)圖a中,∠AEG=______°;
(2)圖a中,∠BMG=______°;
(3)圖b中,∠EFN=______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為緩解交通擁堵,某區(qū)擬計(jì)劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面與通道平行),通道水平寬度為8米, ,通道斜面 的長為6米,通道斜面的坡度.
(1)求通道斜面的長為 米;
(2)為增加市民行走的舒適度,擬將設(shè)計(jì)圖中的通道斜面的坡度變緩,修改后的通道斜面的坡角為30°,求此時(shí)的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,AB為⊙O的直徑,AD與⊙O相切于點(diǎn)A,DE與⊙O相切于點(diǎn)E,點(diǎn)C為DE延長線上一點(diǎn),且CE=CB.
(1)求證:BC為⊙O的切線;
(2)連接AE并延長與BC的延長線交于點(diǎn)G(如圖②所示).若AB=,CD=9,求線段BC和EG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com