【題目】已知:如圖,已知直線AB的函數(shù)解析式為y=﹣2x+8,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)若點(diǎn)P(m,n)為線段AB上的一個(gè)動點(diǎn)(與A、B不重合),作PE⊥x軸于點(diǎn)E,PF⊥y軸于點(diǎn)F,連接EF,問:

①若△PAO的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出m的取值范圍;

②是否存在點(diǎn)P,使EF的值最?若存在,求出EF的最小值;若不存在,請說明理由.

【答案】(1)A(4,0),B(0,8);(2)S =﹣4m+16,(0m4);(3),理由見解析

【解析】試題分析:(1)根據(jù)坐標(biāo)軸上點(diǎn)的特點(diǎn)直接求值,
(2)①由點(diǎn)在直線AB上,找出mn的關(guān)系,再用三角形的面積公式求解即可;
②判斷出EF最小時(shí),點(diǎn)P的位置,根據(jù)三角形的面積公式直接求解即可.

試題解析:

(1)令x=0,則y=8,

B(0,8),

y=0,則﹣2x+8=0,

x=4,

A(4,0),

(2)∵點(diǎn)P(m,n)為線段AB上的一個(gè)動點(diǎn),

﹣2m+8=n,A(4,0),

OA=4,

0<m<4

SPAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);

(3)存在,理由如下

PEx軸于點(diǎn)E,PFy軸于點(diǎn)F,OAOB,

∴四邊形OEPF是矩形,

EF=OP,

當(dāng)OPAB時(shí),此時(shí)EF最小,

A(4,0),B(0,8),

AB=4,

SAOB=OA×OB=AB×OP,

OP= ,

EF最小=OP=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)閱讀理解:

如圖①,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.

中線AD的取值范圍是 ;

(2)問題解決:

如圖②,在ABC中,D是BC邊上的中點(diǎn),DEDF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖③,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算中,不正確的有(  )

①(ab23=ab6;②(3xy23=9x3y6;③(﹣2x32=﹣4x6;④(﹣a2m3=a6m

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,一次函數(shù)y=kx+bk、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=n為常數(shù)且n≠0)的圖象在第二象限交于點(diǎn)CCDx軸,垂直為D,若OB=2OA=3OD=6

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求兩函數(shù)圖象的另一個(gè)交點(diǎn)坐標(biāo);

3)直接寫出不等式;kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形三邊分別為2,a-1,4,那么a的取值范圍是( 。

A. 1a5B. 2a6C. 3a7D. 4a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, , , 分別是、邊的中點(diǎn).將繞點(diǎn)順時(shí)針旋轉(zhuǎn)角(),得到(如圖).

)當(dāng)時(shí), 為直角三角形.

)當(dāng)時(shí),旋轉(zhuǎn)角

)如圖,在旋轉(zhuǎn)過程中,設(shè)所在直線交于點(diǎn),當(dāng)成為等腰三角形時(shí),旋轉(zhuǎn)角,其中正確的結(jié)論有:( ).

A. )()( B. )()( C. )()( D. )()(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠制作甲、乙兩種環(huán)保包裝盒,如果同樣用的材料制成甲盒的個(gè)數(shù)比制成乙盒的個(gè)數(shù)少個(gè),且制成一個(gè)甲盒比制作一個(gè)乙盒需要多用的材料.

求制作每個(gè)甲盒、乙盒各用多少材料?

)如果制作甲、乙兩種包裝盒個(gè)且甲盒的數(shù)量不少于乙盒數(shù)量的倍,那么請寫出所需材料總長度與甲盒數(shù)量個(gè))之間的函數(shù)關(guān)系式,并求出最少需要多少米材料.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程kx2-4x+2=0有實(shí)數(shù)根.

1)求k的取值范圍;

2)若ABC中,AB=AC=2,ABBC的長是方程kx2-4x+2=0的兩根,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①全等圖形的形狀相同、大小相等;②三邊對應(yīng)相等的兩個(gè)三角形全等;③全等三角形的對應(yīng)角相等;④全等三角形的周長、面積分別相等,其中正確的說法為(

A.①②④B.①③④C.②③④D.①②③④

查看答案和解析>>

同步練習(xí)冊答案