【題目】如圖,AB是⊙O的直徑,⊙O過AC的中點(diǎn)D,DE切⊙O于點(diǎn)D,交BC于E.
(1)求證DE⊥BC;
(2)若⊙O的半徑為5,BE=2,求DE的長度.
【答案】(1)證明見解析;(2)DE=4
【解析】
(1)連接OD ,DE是切線,則OD⊥DE,則OD是△ABC的中位線,可得OD∥BC,據(jù)此即可求證;
(2)過B作OD的垂線,垂足為F,證明四邊形DFBE為矩形,Rt△OFB中用勾股定理即可求得DE的長度.
證明(1)連接OD
∵DE切⊙O于點(diǎn)D
∴OD⊥DE
∴∠ODE=90°
∵D是AC的中點(diǎn),O是AB的中點(diǎn)
∴OD是△ABCD的中位線
∴OD∥BC
∴∠DEC=90°
∴DE⊥BC
(2)過B作BF⊥OD
∵BF⊥OD
∴∠DFB=90°
∴∠DFB=∠DEB=∠ODE=90°
∴四邊形DFBE為矩形
∴DF=BE=2
∴OF=OD-DF=5-2=3
∴DE=BF=4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=ax+b(a,b為常數(shù),a≠0)的圖象與x軸,y軸分別交于點(diǎn)A,B,且與反比例函數(shù)y=(k為常數(shù),k≠0)的圖象在第二象限內(nèi)交于點(diǎn)C,作CD⊥x軸于,若OA=OD=OB=3.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)觀察圖象直接寫出不等式0<ax+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的商品的市場指導(dǎo)價為每件150元,公司的實際銷售價格可以浮動x個百分點(diǎn)(即銷售價格=150(1+x%)),經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品的日銷售量y(件)與銷售價格浮動的百分點(diǎn)x之間的函數(shù)關(guān)系為y=﹣2x+24.若該公司按浮動﹣12個百分點(diǎn)的價格出售,每件商品仍可獲利10%.
(1)求該公司生產(chǎn)銷售每件商品的成本為多少元?
(2)當(dāng)實際銷售價格定為多少元時,日銷售利潤為660元?(說明:日銷售利潤=(銷售價格一成本)×日銷售量)
(3)該公司決定每銷售一件商品就捐贈a元利潤(a≥1)給希望工程,公司通過銷售記錄發(fā)現(xiàn),當(dāng)價格浮動的百分點(diǎn)大于﹣2時,扣除捐贈后的日銷售利潤隨x增大而減小,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點(diǎn)A、D在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)F在AB上,點(diǎn)B,E在反比例函數(shù)y=的圖象上,OA=1,OC=6,試求出正方形ADEF的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在學(xué)習(xí)與圓有關(guān)的角時了解到:在同圓或等圓中,同弧(或等。┧鶎Φ膱A周角相等.如圖,點(diǎn)A、B、C、D均為⊙O上的點(diǎn),則有∠C=∠D.
小明還發(fā)現(xiàn),若點(diǎn)E在⊙O外,且與點(diǎn)D在直線AB同側(cè),則有∠D >∠E. 請你參考小明得出的結(jié)論,解答下列問題:
(1)如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,7),點(diǎn)B的坐標(biāo)為(0,3),點(diǎn)C的坐標(biāo)為(3,0) .①在圖1中作出△ABC的外接圓(保留必要的作圖痕跡,不寫作法);
②若在軸的正半軸上有一點(diǎn)D,且∠ACB =∠ADB,則點(diǎn)D的坐標(biāo)為________;
(2) 如圖2,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,m),點(diǎn)B的坐標(biāo)為(0,n),其中m>n>0.點(diǎn)P為軸正半軸上的一個動點(diǎn),當(dāng)∠APB達(dá)到最大時,直接寫出此時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為“鳳凰”方程.已知是“鳳凰”方程,且有兩個相等的實數(shù)根,則下列結(jié)論正確的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊的邊長為8,點(diǎn)P是AB邊上的一個動點(diǎn)(與點(diǎn)A、B不重合),直線是經(jīng)過點(diǎn)P的一條直線,把沿直線折疊,點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn).
(1)如圖1,當(dāng)時,若點(diǎn)恰好在AC邊上,則的長度為 ;
(2)如圖2,當(dāng)時,若直線,則的長度為 ;
(3)如圖3,點(diǎn)P在AB邊上運(yùn)動過程中,若直線始終垂直于AC,的面積是否變化?若變化,說明理由;若不變化,求出面積;
(4)當(dāng)時,在直線變化過程中,求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形OABC的三個頂點(diǎn)A、B、C在以O為圓心的半圓上,過點(diǎn)C作CD⊥AB,分別交AB、AO的延長線于點(diǎn)D、E,AE交半圓O于點(diǎn)F,連接CF.
(1)判斷直線DE與半圓O的位置關(guān)系,并說明理由;
(2)若半圓O的半徑為12,求涂色部分的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,專家預(yù)測,2019年我市豬肉售價將逐月上漲,每千克豬肉的售價y1(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足一次函數(shù)關(guān)系,如下表所示.每千克豬肉的成本y2(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售價y1/元 | … | 12 | 14 | 16 | 18 | … |
(1)求y1與x之間的函數(shù)關(guān)系式.
(2)求y2與x之間的函數(shù)關(guān)系式.
(3)設(shè)銷售每千克豬肉所獲得的利潤為w(元),求w與x之間的函數(shù)關(guān)系式,哪個月份銷售每千克豬肉所第獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com