【題目】如圖所示,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點D.

(1)BC=10,BD=6,則點DAB的距離是多少?

(2)若∠BAD=30°,求∠B的度數(shù).

【答案】(1)4.(2)30°.

【解析】

過點DDEABE,先求出CD,再根據(jù)角平分線上的點到角的兩邊的距離相等可得DE=CD,從而得解;

根據(jù)角平分線的定義可求出∠CAB的度數(shù),再根據(jù)三角形內(nèi)角和定理即可解答.

解: 1)過點DDE⊥ABE,
∵BC=8,BD=5,
∴CD=BC-BD=10-6=4,
∵∠C=90°,AD平分∠BAC,
∴DE=CD=4,
即點DAB的距離是4;

(2) 因為AD平分∠BAC,

所以∠BAC=2BAD=60°.

又因為∠C=90°,

所以∠B=90°-60°=30°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是矩形ABCDAD邊上一個動點,矩形的兩條邊AB、BC長分別是68,則點P到矩形的兩條對角線距離之和PE+PF是(

A. 4.8 B. 5 C. 6 D. 7.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知代數(shù)式Ax2+3xyx,B=2x2xy+4y-1

(1)xy=-2時,求2AB的值;

(2)2AB的值與y的取值無關(guān),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB與直線CD相交于點O,BOE=90°,F(xiàn)O平分∠BOD,BOC:AOC=1:3.

(1)求∠DOE、COF的度數(shù).

(2)若射線OF、OE同時繞O點分別以2°/s、4°/s的速度,順時針勻速旋轉(zhuǎn),當射線OE、OF的夾角為90°時,兩射線同時停止旋轉(zhuǎn).設(shè)旋轉(zhuǎn)時間為t,試求t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)騎自行車去郊外春游,騎行1小時后,自行車出現(xiàn)故障,維修好后繼續(xù)騎行,下圖表示他離家的距離y(千米)與所用的時間x()之間關(guān)系的圖象

(1)根據(jù)圖象回答:小明到達離家最遠的地方用了多長時間?此時離家多遠?

(2)求小明出發(fā)2.5小時后離家多遠;

(3)求小明出發(fā)多長時間離家12千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°,AB=AC,點D在BC上,且BD=BA,點E在BC的延長線上,且CE=CA.

(1)試求DAE的度數(shù);

(2)如果把原題中“AB=AC”的條件去掉,其余條件不變,那么DAE的度數(shù)會改變嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,AD=6,點E、F分別在邊CD、AB上.
(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件,使△ABE ≌ △CDF,則添加的條件不能為( )

A. BE=DF B. BF=DE C. ∠1=∠2 D. AE=CF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝元旦,某校組織大合唱匯演.初一(1)、(2)班學(xué)生準備統(tǒng)一購買服裝參加演出(一人買一套),這兩班共有學(xué)生104名學(xué)生參加演出,其中(1)班人數(shù)較少,不足50人.下面是某服裝廠給出的服裝價格表:

購買服裝的套數(shù)

1﹣50

51﹣100

100套以上

每套服裝的價格

 130

 110

  90

經(jīng)估算,如果兩個班都以班為單位購買服裝,那么一共應(yīng)付12400元,問:

(1)兩班各有多少學(xué)生?

(2)如果兩班聯(lián)合起來,作為一個團體購買服裝,可省多少錢?

(3)如果(2)班不購買了,只有(1)班單獨購買,作為組織者的你將如何購買才最省錢?

查看答案和解析>>

同步練習(xí)冊答案