【題目】如圖,AB⊥BC于點B,DC⊥BC于點C,DE平分∠ADC交BC于點E,點F為線段CD延長線上一點,∠BAF=∠EDF.
(1)求證:∠DAF=∠F;
(2)在不添加任何輔助線的情況下,請直接寫出所有與∠CED互余的角.
【答案】(1)證明見解析;(2)與∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.
【解析】
(1)依據(jù)AB⊥BC于點B,DC⊥BC于點C,即可得到AB∥CF,進而得出∠BAF+∠F=180°,再根據(jù)∠BAF=∠EDF,即可得出ED∥AF,依據(jù)三角形外角性質(zhì)以及角平分線的定義,即可得到∠DAF=∠F;(2)結(jié)合圖形,根據(jù)余角的概念,即可得到所有與∠CED互余的角.
解:(1)∵AB⊥BC于點B,DC⊥BC于點C,
∴∠B+∠C=180°,
∴AB∥CF,
∴∠BAF+∠F=180°,
又∵∠BAF=∠EDF,
∴∠EDF+∠F=180°,
∴ED∥AF,
∴∠ADE=∠DAF,∠EDC=∠F,
∵DE平分∠ADC,
∴∠ADE=∠CDE,
∴∠DAF=∠F;
(2)∵∠C=90°,
∴∠CED+∠CDE=90°,
∴∠CED與∠CDE互余,
又∵∠ADE=∠DAF=∠EDC=∠F,
∴與∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,無論k取何實數(shù),直線y=(k-1)x+4-5k總經(jīng)過定點P,則點P與動點Q(5m-1,5m+1)的距離的最小值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程(組)解應(yīng)用題:
為順利通過國家義務(wù)教育均衡發(fā)展驗收,我市某中學配備了兩個多媒體教室,購買了筆記本電腦和臺式電腦共120臺,購買筆記本電腦用了7.2萬元,購買臺式電腦用了24萬元,已知筆記本電腦單價是臺式電腦單價的1.5倍,那么筆記本電腦和臺式電腦的單價各是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量某電線桿(底部可到達)的高度,準備了如下的測量工具:
①平面鏡;②皮尺;③長為2米的標桿;④高為1.5m的測角儀(測量仰角、俯角的儀器),請根據(jù)你所設(shè)計的測量方案,回答下列問題:
(1)畫出你的測量方案示意圖,并根據(jù)你的測量方案寫出你所選用的測量工具;
(2)結(jié)合你的示意圖,寫出求電線桿高度的思路.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索研究:已知:△ABC和△CDE都是等邊三角形.
(1)如圖1,若點A、C、E在一條直線上時,我們可以得到結(jié)論:線段AD與BE的數(shù)量關(guān)系為: ,線段AD與BE所成的銳角度數(shù)為 °;
(2)如圖2,當點A、C、E不在一條直線上時,請證明(1)中的結(jié)論仍然成立;
靈活運用:
如圖3,某廣場是一個四邊形區(qū)域ABCD,現(xiàn)測得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,試求水池兩旁B、D兩點之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在三角形中,,垂足為點,直線過點,且,點為線段上一點,連接,∠BCG與∠BCE的角平分線CM、CN分別交于點M、N,若,則=_________°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1.
(1)在圖中畫出△A1B1C1;
(2)點A1,B1,C1的坐標分別為 、 、 ;
(3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,A,B在數(shù)軸上對應(yīng)的數(shù)分別用a,b表示,且(ab+100)2+|a﹣20|=0,P是數(shù)軸上的一個動點.
(1)在數(shù)軸上標出A、B的位置,并求出A、B之間的距離.
(2)已知線段OB上有點C且|BC|=6,當數(shù)軸上有點P滿足PB=2PC時,求P點對應(yīng)的數(shù).
(3)動點P從原點開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度第四次向右移動7個單位長度,….點P能移動到與A或B重合的位置嗎?若都不能,請直接回答.若能,請直接指出,第幾次移動與哪一點重合.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】白色污染(White Pollution)是人們對難降解的塑料垃圾(多指塑料袋)污染環(huán)境現(xiàn)象的一種形象稱謂.為了讓全校同學感受丟棄塑料袋對環(huán)境的影響,小彬隨機抽取某小區(qū)戶居民,記錄了這些家庭年某個月丟棄塑料袋的數(shù)量(單位:個):
請根據(jù)上述數(shù)據(jù),解答以下問題:
(1)小彬按“組距為”列出了如下的頻數(shù)分布表(每組數(shù)據(jù)含最小值),請將表中空缺的部分補充完整,并補全頻數(shù)直方圖;
(2)根據(jù)(1)中的直方圖可以看出,這戶居民家這個月丟棄塑料袋的個數(shù)在 組的家庭最多;(填分組序號)
(3)根據(jù)頻數(shù)分布表,小彬又畫出了右圖所示的扇形統(tǒng)計圖.請將統(tǒng)計圖中各組占總數(shù)的百分比填在圖中,并求出組對應(yīng)的扇形圓心角的度數(shù);
(4)若小區(qū)共有戶居民家庭,請你估計每月丟棄的塑料袋數(shù)量不小于個家庭個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com