【題目】如圖,一個點從數(shù)軸上的原點開始,先向右移動3個單位長度,再向左移動5個單位長度,從圖中可以看出,終點表示的數(shù)是﹣2,已知A,B是數(shù)軸上的點.請參照圖并思考,完成下列填空:
(1)如果點A表示數(shù)3,將點A向右移動7個單位長度,那么終點B表示的數(shù)是 ,A,B兩點間的距離是 .
(2)如果點B表示數(shù)2,將點B向左移動9個單位長度,再向右移動5個單位長度,那么終點A表示的數(shù)是 ,A,B兩點間的距離是 .
(3)如果點A表示的數(shù)是﹣4,將點A向右移動168個單位長度;再向左移動2個單位長度,那么終點B表示的數(shù)是 ,A,B兩點間的距離是 .
(4)一般地,如果A點表示的數(shù)為m,將A點向右移動n個單位長度,再向左移動p個單位長度,那么請你猜想終點B表示的數(shù)是 ,A,B兩點間的距離是 .
【答案】(1)10,7;(2)﹣2,4;(3)162,166;(4)m+n﹣p,|n﹣p|.
【解析】
(1)根據(jù)數(shù)軸上的點向右平移加,可得B點表示的數(shù),根據(jù)數(shù)軸上兩點間的距離是大數(shù)減小數(shù),可得答案;
(2)根據(jù)數(shù)軸上的點向左平移減,向右平移加,可得A點表示的數(shù),根據(jù)數(shù)軸上兩點間的距離是大數(shù)減小數(shù),可得答案;
(3)根據(jù)數(shù)軸上的點向右平移加,向左平移減,可得B點表示的數(shù),根據(jù)數(shù)軸上兩點間的距離是大數(shù)減小數(shù),可得答案;
(4)根據(jù)數(shù)軸上的點向右平移加,向左平移減,可得B點表示的數(shù),根據(jù)數(shù)軸上兩點間的距離是大數(shù)減小數(shù),可得答案;
(1)由題意可知,點表示:,間距離為;
故答案為,;
(2)由題意可知,點表示:,間距離為;
故答案為,;
(3)由題意可知,點表示:,間距離為;
故答案為,;
(4)由題意可知,點表示:,間距離為;
故答案為,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,寬為20米,長為32米的長方形地面上,修筑寬度為x米的兩條互相垂直的小路,余下的部分作為耕地,如果要在耕地上鋪上草皮,選用草皮的價格是每平米a元,
(1)求買草皮至少需要多少元?(用含a,x的式子表示)
(2)計算a=40,x=2時,草皮的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形中,,,動點、分別從點、同時出發(fā),點以2厘米/秒的速度向終點移動,點以1厘米/秒的速度向移動,當有一點到達終點時,另一點也停止運動.設運動的時間為,問:
(1)當秒時,四邊形面積是多少?
(2)當為何值時,點和點距離是?
(3)當_________時,以點、、為頂點的三角形是等腰三角形.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題9分)據(jù)報道,“國際剪刀石頭布協(xié)會”提議將“剪刀石頭布”作為奧運會比賽項目.某校學生會想知道學生對這個提議的了解程度,隨機抽取部分學生進行了一次問卷調(diào)查,并根據(jù)收集到的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有___名,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為___;請補全條形統(tǒng)計圖;
(2)若該校共有學生900人,請根據(jù)上述調(diào)查結果,估計該校學生中對將“剪刀石頭布”作為奧運會比賽項目的提議達到“了解”和“基本了解”程度的總人數(shù);
(3)“剪刀石頭布”比賽時雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢,則算打平.若小剛和小明兩人只比賽一局,請用樹狀圖或列表法求兩人打平的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形紙片ABCD中,AB=8,將紙片折疊,折痕的一個端點F在邊AD上,另一個端點G在邊BC上,頂點B的對應點為E.
(1)如圖(1),當頂點B的對應點E落在邊AD上時.
①連接BF,試判斷四邊形BGEF是怎樣的特殊四邊形,并說明理由;
②若BG=10,求折痕FG的長;
(2)如圖(2),當頂點B的對應點E落在長方形內(nèi)部,E到AD的距離為2,且BG=10時,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,E是BC邊上一點,F是BA延長線上一點,AF=CE,連接BD,EF,FG平分∠BFE交BD于點G.
(1)求證:△ADF≌△CDE;
(2)求證:DF=DG;
(3)如圖2,若GH⊥EF于點H,且EH=FH,設正方形ABCD的邊長為x,GH=y,求y與x之間的關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點D,E是位于AB兩側的半圓AB上的動點,射線DC切⊙O于點D.連接DE,AE,DE與AB交于點P,F是射線DC上一動點,連接FP,FB,且∠AED=45°.
(1)求證:CD∥AB;
(2)填空:
①若DF=AP,當∠DAE=_________時,四邊形ADFP是菱形;
②若BF⊥DF,當∠DAE=_________時,四邊形BFDP是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,E是邊CD的中點,連接BE并延長與AD的延長線相交于點F,連接CF.四邊形BDFC是平行四邊形嗎?證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com