閱讀與證明:
如圖,已知正方形ABCD中,E、F分別是CD、BC上的點,且∠EAF=45°,

求證:BF+DE=EF.
分析:證明一條線段等于另兩條線段的和,常用“截長法”或“補短法”,將線段BF、DE放在同一直線上,構(gòu)造出一條與BF+DE相等的線段.如圖1延長ED至點F′,使DF′=BF,連接A F′,易證△ABF≌△ADF′,進一步證明△AEF≌△AEF′,即可得結(jié)論.
(1)請你將下面的證明過程補充完整.
證明:延長ED至F′,使DF′=BF,
∵四邊形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
應(yīng)用與拓展:如圖建立平面直角坐標(biāo)系,使頂點A與坐標(biāo)原點O重合,邊OB、OD分別在x軸、y軸的正半軸上.
(2)設(shè)正方形邊長OB為30,當(dāng)E為CD中點時,試問F為BC的幾等分點?并求此時F點的坐標(biāo);
(3)設(shè)正方形邊長OB為30,當(dāng)EF最短時,直接寫出直線EF的解析式:______
【答案】分析:(1)延長EDF′,使DF′=BF,由ABCD為正方形,根據(jù)正方形的四條邊相等得到AB=AD,∠ABF=∠ADF′=90°,利用SAS可得出三角形ABF與三角形ADF′全等,根據(jù)全等三角形的性質(zhì)得到AF=AF′,∠BAF=∠DAF′,由∠EAF為45°,得到∠DAE+∠FAB=45°,等量代換可得出∠EAF′=45°,然后利用SAS得到三角形AEF與三角形AEF′,利用全等三角形的對應(yīng)邊相等得到EF=EF′,而EF′=ED+DF′,再將DF′換為BF即可得證;
(2)設(shè)BF=a,由CB-FB表示出CF,由EF=ED+FB表示出EF,在直角三角形CEF中,利用勾股定理列出關(guān)于a的方程,求出方程的解得到a的值為10,可得出F為BC的三等分點;
(3)當(dāng)CE=CF時,EF最短,此時△CEF為等腰直角三角形,由題意設(shè)出F(30,b),即FB=b,由CB-FB表示出CF,即為CE,由EF=BF+DE=2BF=2b,在直角三角形CEF中,由表示出的CF與CE利用勾股定理表示出EF,可列出關(guān)于b的方程,求出方程的解得到b的值,確定出E與F的坐標(biāo),設(shè)直線EF的解析式為y=kx+b,將E和F的坐標(biāo)代入得到關(guān)于k與b的二元一次方程組,求出方程組的解得到k與b的值,進而確定出直線EF的解析式.
解答:(1)證明:延長ED至F′,使DF′=BF,
∵四邊形ABCD是正方形,
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS),
∴AF=AF′,∠BAF=∠DAF′,
∵∠F′AE=∠F′AD+∠DAE=∠BAF+∠DAE=∠DAB-∠EAF=45°,
又∵∠EAF=45°,
∴∠F′AE=∠EAF,
,
∴△AEF≌△AEF′(SAS),
∴EF=EF′=ED+DF′=ED+BF;

(2)解:設(shè)BF=a,則CF=30-a,EF=ED+FB=15+a,
在Rt△CEF中,根據(jù)勾股定理得:EC2+CF2=EF2
∴152+(30-a)2=(15+a)2,
∴a=10,
∴F為BC的三等分點,
∴F(30,10);

(3)解:當(dāng)CE=CF時,EF最短,此時△CEF為等腰直角三角形,
設(shè)F坐標(biāo)為(30,b),可得FB=b,
∴CF=CE=BC-FB=30-b,
∴EF=(30-b),
又EF=FB+DE,∴(30-b)=2b,
解得:b==30-30,
∴FB=DE=30-30,
∴E(30-30,30),F(xiàn)(30,30-30),
設(shè)直線EF的解析式為y=kx+b,
將E和F的坐標(biāo)代入得:
,
解得:,
則直線EF的解析式為y=-x+30
故答案為:y=-x+30
點評:此題考查了一次函數(shù)綜合題,涉及的知識有:全等三角形的判定與性質(zhì),坐標(biāo)與圖形性質(zhì),利用待定系數(shù)法求一次函數(shù)解析式,正方形的性質(zhì),等腰直角三角形的性質(zhì),以及勾股定理,利用了轉(zhuǎn)化的數(shù)學(xué)思想,其中根據(jù)題意得到當(dāng)CE=CF時,EF最短是解第三問的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•惠山區(qū)一模)閱讀與證明:
如圖,已知正方形ABCD中,E、F分別是CD、BC上的點,且∠EAF=45°,

求證:BF+DE=EF.
分析:證明一條線段等于另兩條線段的和,常用“截長法”或“補短法”,將線段BF、DE放在同一直線上,構(gòu)造出一條與BF+DE相等的線段.如圖1延長ED至點F′,使DF′=BF,連接A F′,易證△ABF≌△ADF′,進一步證明△AEF≌△AEF′,即可得結(jié)論.
(1)請你將下面的證明過程補充完整.
證明:延長ED至F′,使DF′=BF,
∵四邊形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
應(yīng)用與拓展:如圖建立平面直角坐標(biāo)系,使頂點A與坐標(biāo)原點O重合,邊OB、OD分別在x軸、y軸的正半軸上.
(2)設(shè)正方形邊長OB為30,當(dāng)E為CD中點時,試問F為BC的幾等分點?并求此時F點的坐標(biāo);
(3)設(shè)正方形邊長OB為30,當(dāng)EF最短時,直接寫出直線EF的解析式:
y=-x+30
2
y=-x+30
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇省無錫市惠山區(qū)2012屆九年級下學(xué)期期中考試數(shù)學(xué)試題 題型:044

閱讀與證明:

如圖,已知正方形ABCD中,E、F分別是CD、BC上的點,且∠EAF=45°,求證:BF+DE=EF.

分析:證明一條線段等于另兩條線段的和,常用“截長法”或“補短法”,將線段BF、DE放在同一直線上,構(gòu)造出一條與BF+DE相等的線段.如圖延長ED至點,使D=BF,連接A,易證△ABF≌△AD,進一步證明△AEF≌△AE,即可得結(jié)論.

(1)請你將下面的證明過程補充完整.

證明:延長ED至,使D=BF,

∵四邊形ABCD是正方形

∴AB=AD,∠ABF=∠AD=90°,

∴△ABF≌△AD(SAS)

應(yīng)用與拓展:如圖建立平面直角坐標(biāo)系,使頂點A與坐標(biāo)原點O重合,邊OB、OD分別在x軸、y軸的正半軸上.

(2)設(shè)正方形邊長OB為30,當(dāng)E為CD中點時,試問F為BC的幾等分點?并求此時F點的坐標(biāo);

(3)設(shè)正方形邊長OB為30,當(dāng)EF最短時,直接寫出直線EF的解析式:________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀與證明:
如圖,已知正方形ABCD中,E、F分別是CD、BC上的點,且∠EAF=45°,

求證:BF+DE=EF.
分析:證明一條線段等于另兩條線段的和,常用“截長法”或“補短法”,將線段BF、DE放在同一直線上,構(gòu)造出一條與BF+DE相等的線段.如圖1延長ED至點F′,使DF′=BF,連接A F′,易證△ABF≌△ADF′,進一步證明△AEF≌△AEF′,即可得結(jié)論.
(1)請你將下面的證明過程補充完整.
證明:延長ED至F′,使DF′=BF,
∵四邊形ABCD是正方形
∴AB=AD,∠ABF=∠ADF′=90°,
∴△ABF≌△ADF’(SAS)
應(yīng)用與拓展:如圖建立平面直角坐標(biāo)系,使頂點A與坐標(biāo)原點O重合,邊OB、OD分別在x軸、y軸的正半軸上.
(2)設(shè)正方形邊長OB為30,當(dāng)E為CD中點時,試問F為BC的幾等分點?并求此時F點的坐標(biāo);
(3)設(shè)正方形邊長OB為30,當(dāng)EF最短時,直接寫出直線EF的解析式:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇期中題 題型:解答題

閱讀與證明:    
如圖,已知正方形ABCD中,E、F分別是CD、BC上的點,且∠EAF=45 °,
求證:BF+DE=EF。
分析:證明一條線段等于另兩條線段的和,常用“截長法”或“補短法”,將線段BF、DE放在同一直線上,構(gòu)造出一條與BF+DE相等的線段。如圖1延長ED至點F',使DF'=BF,連接A F',易證△ABF≌△ADF',進一步證明△AEF≌△AEF',即可得結(jié)論。
(1)請你將下面的證明過程補充完整。
證明:延長ED至F',使DF'=BF,
∵ 四邊形ABCD是正方形
∴ AB=AD,∠ABF=∠ADF'=90°,
∴ △ABF≌△ADF'(SAS)
應(yīng)用與拓展:如圖建立平面直角坐標(biāo)系,使頂點A與坐標(biāo)原點O重合,邊OB、OD分別在x軸、y軸的正半軸上。
(2)設(shè)正方形邊長OB為30,當(dāng)E為CD中點時,試問F為BC的幾等分點?并求此時F點的坐標(biāo);
(3)設(shè)正方形邊長OB為30,當(dāng)EF最短時,直接寫出直線EF的解析式:                 。

查看答案和解析>>

同步練習(xí)冊答案