【題目】如圖,在平面直角坐標系中,等腰直角三角形AOB的直角頂點A在第四象限,頂點B(0,﹣2),點C(0,1),點D在邊AB上,連接CD交OA于點E,反比例函數 的圖象經過點D,若△ADE和△OCE的面積相等,則k的值為 .
【答案】﹣
【解析】解:如圖,過點D作DF⊥OB于F, ∵等腰直角三角形AOB的頂點B(0,﹣2),點C(0,1),
∴OB=2,AO=AB= ,BC=3,DF=BF,
∴△AOB的面積= × × =1,
又∵△ADE和△OCE的面積相等,
∴△BCD和△AOB的面積相等,
∴△BCD的面積為1,
即 ×BC×DF=1,
∴ ×3×DF=1,
解得DF=
∴BF= ,
∴OF=2﹣ = ,
∴D( ,﹣ ),
∵反比例函數 的圖象經過點D,
∴k= ×(﹣ )=﹣ .
所以答案是:﹣
【考點精析】關于本題考查的等腰直角三角形,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO.
(1)已知BD= ,求正方形ABCD的邊長;
(2)猜想線段CM與CN的數量關系并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數 的圖象如圖.
(1)求它的對稱軸與x軸交點D的坐標;
(2)將該拋物線沿它的對稱軸向上平移,設平移后的拋物線與x軸,y軸的交點分別為A、B、C三點,若∠ACB=90°,求此時拋物線的解析式;
(3)設(2)中平移后的拋物線的頂點為M,以AB為直徑,D為圓心作⊙D,試判斷直線CM與⊙D的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F.切點為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KDGE,試判斷AC與EF的位置關系,并說明理由;
(3)在(2)的條件下,若sinE= ,AK=2 ,求FG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,D是斜邊AB的中點,AC=4,BC=2,將△ACD沿直線CD折疊,點A落在點E處,聯結AE,那么線段AE的長度等于 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,大樓AD與塔CB之間的距離AC長為27m,某人在樓底A處測得塔頂的仰角為60°,爬到樓頂D處測得塔頂B的仰角為30°,分別求大樓AD的高與塔BC的高(結果精確到0.1m,參考數據: ≈2.24, ≈1.732, ≈1.414)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,過點A(﹣ ,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標分別是一元二次方程x2﹣2x﹣3=0的兩個根
(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標;
(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com