【題目】如圖,△ABD是以BD為斜邊的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中點為E,AD與BE的延長線交于點F,則∠AFB的度數(shù)為( )

A.30°
B.15°
C.45°
D.25°

【答案】B
【解析】解:∵∠DBC=90°,E為DC中點,

∴BE=CE= CD,

∵∠BCD=60°,

∴∠CBE=60°,∴∠DBF=30°,

∵△ABD是等腰直角三角形,

∴∠ABD=45°,

∴∠ABF=75°,

∴∠AFB=180°﹣90°﹣75°=15°,

所以答案是:B.

【考點精析】本題主要考查了等腰直角三角形和直角三角形斜邊上的中線的相關(guān)知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC是∠AOB的平分線,OD是∠AOC的平分線,OE是∠BOD的平分線,且∠BOE30°,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到為地震災(zāi)區(qū)生產(chǎn)活動房的任務(wù),此企業(yè)擁有九個生產(chǎn)車間,現(xiàn)在每個車間原有的成品活動房一樣多,每個車間的生產(chǎn)能力也一樣.有AB兩組檢驗員,其中A組有8名檢驗員前兩天時間將第一、二車間的所有成品(原來的和這兩天生產(chǎn)的)檢驗完畢后,再去檢驗第三、四車間所有成品,又用去三天時間;同時這五天時間B組檢驗員也檢驗完余下的五個車間的所有成品.如果每個檢驗員的檢驗速度一樣快,那么B組檢驗員人數(shù)為( 。

A. 8B. 10C. 12D. 14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,過點DDEBDBA的延長線于點E.

(1)當(dāng)ABCD是菱形時,證明:AE=AB;

(2)當(dāng)ABCD是矩形時,設(shè)∠E=α,問:∠E與∠DOA滿足什么數(shù)量關(guān)系?寫出結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推動“龍江經(jīng)濟帶”建設(shè),我省某蔬菜企業(yè)決定通過加大種植面積、增加種植種類,促進經(jīng)濟發(fā)展.2017年春,預(yù)計種植西紅柿、馬鈴薯、青椒共100公頃(三種蔬菜的種植面積均為整數(shù)),青椒的種植面積是西紅柿種植面積的2倍,經(jīng)預(yù)算,種植西紅柿的利潤可達1萬元/公頃,青椒1.5萬元/公頃,馬鈴薯2萬元/公頃,設(shè)種植西紅柿x公頃,總利潤為y萬元.
(1)求總利潤y(萬元)與種植西紅柿的面積x(公頃)之間的關(guān)系式.
(2)若預(yù)計總利潤不低于180萬元,西紅柿的種植面積不低于8公頃,有多少種種植方案?
(3)在(2)的前提下,該企業(yè)決定投資不超過獲得最大利潤的 在冬季同時建造A、B兩種類型的溫室大棚,開辟新的經(jīng)濟增長點,經(jīng)測算,投資A種類型的大棚5萬元/個,B種類型的大棚8萬元/個,請直接寫出有哪幾種建造方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標(biāo)為(n,6),點C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE、BF、DC是直線,B在直線AC上,E在直線DF上,∠1=∠2,∠A=∠F.

求證:∠C=∠D.

證明:因為∠1=∠2(已知),∠1=∠3( )

得∠2=∠3( )

所以AE//_______( )

得∠4=∠F( )

因為__________(已知)

得∠4=∠A

所以______//_______( )

所以∠C=∠D( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知4m=a8n=b,用含ab的式子表示下列代數(shù)式①求:22m+3n的值,

②求:24m6n的值;

2)已知2×8x×16=223,x的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個有進水管與出水管的容器,從某時刻開始的3分內(nèi)只進水不出水,在隨后的9分內(nèi)既進水又出水,每分的進水量和出水量都是常數(shù).容器內(nèi)的水量y(單位:升)與時間x(單位:分)之間的關(guān)系如圖所示.當(dāng)容器內(nèi)的水量大于5升時,求時間x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案