【題目】(1)如圖1,在五邊形ABCDE中,AB=AE,∠B=∠BAE=∠AED=90°,∠CAD=45°,試猜想BC,CD,DE之間的數(shù)量關(guān)系.小明經(jīng)過仔細(xì)思考,得到如下解題思路:
將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△AEF,由∠B=∠AED=90°,得∠DEF=180°,即點(diǎn)D,E,F三點(diǎn)共線,易證△ACD≌ ,故BC,CD,DE之間的數(shù)量關(guān)系是 ;
(2)如圖2,在四邊形ABCD中,AB=AD,∠ABC+∠D=180°,點(diǎn)E,F分別在邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.
(3)如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°,若BD=2,CE=3,則DE的長為 .
【答案】(1)△AFD,CD=DE+BC;(2EF=DF﹣BE,理由見解析;(3).
【解析】
(1)如圖1,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△AEF,由∠B=∠AED=90°,得∠DEF=180°,即點(diǎn)D,E,F三點(diǎn)共線,易證△ACD≌△AFD,可得結(jié)論;
(2)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AD重合,得到△ADE',證明△AFE≌△AFE',據(jù)全等三角形的性質(zhì)解答;
(3)將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ACD',使AB與AC重合,連接ED',根據(jù)全等三角形的性質(zhì)、勾股定理計(jì)算.
(1)BC,CD,DE之間的數(shù)量關(guān)系為:DF=DE+BC,理由是:
如圖1,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△AEF,
由∠B=∠AED=∠AEF=90°,得∠DEF=180°,即點(diǎn)D,E,F三點(diǎn)共線,
∵∠BAE=90°,∠CAD=45°,
∴∠BAC+∠DAE=∠DAE+∠EAF=45°,
∴∠CAD=∠FAD,
∵AD=AD,
∴△ACD≌△FAD(SAS),
∴CD=DF=DE+EF=DE+BC,
故答案為:△AFD,CD=DE+BC;
(2)如圖2,EF,BE,DF之間的數(shù)量關(guān)系是EF=DF﹣BE.
證明:將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使AB與AD重合,得到△ADE',
則△ABE≌△ADE',
∴∠DAE'=∠BAE,AE'=AE,DE'=BE,∠ADE'=∠ABE,
∴∠EAE'=∠BAD,
∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,
∠ADE'=∠ADC,即E',D,F三點(diǎn)共線,
又∠EAF=∠BAD=∠EAE'
∴∠EAF=∠E'AF,
在△AEF和△AE'F中,
,
∴△AFE≌△AFE'(SAS),
∴FE=FE',
又∵FE'=DF﹣DE',
∴EF=DF﹣BE;
(3)如圖3,
將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ACD',使AB與AC重合,連接ED',則CD'=BD=2,
由(1)同理得,△AED≌AED',.
∴DE=D'E.
∵∠ACB=∠B=∠ACD'=45°,
∴∠ECD'=90°,
在Rt△ECD'中,ED'=,即DE=,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需繞行B地,已知B地位于A地北偏東67°方向,距離A地520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求A地到C地之間高鐵線路的長.(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A、B兩點(diǎn)的縱坐標(biāo)分別為3,1,反比例函數(shù)y=的圖象經(jīng)過A,B兩點(diǎn),則點(diǎn)D的坐標(biāo)為( )
A. (2﹣1,3)B. (2+1,3)
C. (2﹣1,3)D. (2+1,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某海域,一艘海監(jiān)船在P處檢測到南偏西45°方向的B處有一艘不明船只,正沿正西方向航行,海監(jiān)船立即沿南偏西60°方向以40海里/小時(shí)的速度去截獲不明船只,經(jīng)過1.5小時(shí),剛好在A處截獲不明船只,求不明船只的航行速度.(≈1.41,≈1.73,結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商店用4000元購進(jìn)一批足球,全部售完后,又用3600元再次購進(jìn)同樣的足球,但這次每個(gè)足球的進(jìn)價(jià)是第一次進(jìn)價(jià)的1.2倍,且數(shù)量比第一次少了10個(gè).
(1)求第一次每個(gè)足球的進(jìn)價(jià)是多少元?
(2)若第二次進(jìn)貨后按150元/個(gè)的價(jià)格銷售,當(dāng)售出10個(gè)后,根據(jù)市場情況,商店決定對(duì)剩余的足球全部按同一標(biāo)準(zhǔn)一次性打折售完,但要求這次的利潤不少于450元,問該商店最低可打幾折銷售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是BC上一點(diǎn),連接AE,點(diǎn)F是AE上一點(diǎn),連接FC,若∠BAE=∠EFC,CF=CD,AB:BC=3:2,AF=4,則FC的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理有著悠久的歷史,它曾引起很多人的興趣.英國佩里加(H.Perigal,1801﹣1898)用“水車翼輪法”(圖1)證明了勾股定理.該證法是用線段QX,ST,將正方形BIJC分割成四個(gè)全等的四邊形,再將這四個(gè)四邊形和正方形ACYZ拼成大正方形AEFB(圖2).若AD=,tan∠AON=,則正方形MNUV的周長為( 。
A. B. 18C. 16D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知、,B為y軸上的動(dòng)點(diǎn),以AB為邊構(gòu)造,使點(diǎn)C在x軸上,為BC的中點(diǎn),則PM的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點(diǎn)D,連接CD,則△BDC的周長為( 。
A. 8 B. 9 C. 5+ D. 5+
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com