問題提出:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個點作為頂

點,可把原n邊形分割成多少個互不重疊的小三角形?

問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡單和具體的情形入手:

探究一:以△ABC的3個頂點和它內(nèi)部的1個點P,共4個點為頂點,可把△ABC分割成多少個互

不重疊的小三角形?如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.

探究二:以△ABC的3個頂點和它內(nèi)部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個

互不重疊的小三角形?

在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個點Q,那么點Q的位置會有兩種

情況:

一種情況,點Q在圖①分割成的某個小三角形內(nèi)部.不妨設(shè)點Q在△PAC的內(nèi)部,如圖②;

另一種情況,點Q在圖①分割成的小三角形的某條公共邊上.不妨設(shè)點Q在PA上,如圖③.

顯然,不管哪種情況,都可把△ABC分割成5個互不重疊的小三角形.

探究三:以△ABC的三個頂點和它內(nèi)部的3個點P、Q、R,共6個點為頂點,可把△ABC分割成     

互不重疊的小三角形,并在圖④中畫出一種分割示意圖.

探究四:以△ABC的三個頂點和它內(nèi)部的m個點,共(m+3)個點為頂點,可把△ABC分割成       

互不重疊的小三角形.

探究拓展:以四邊形的4個頂點和它內(nèi)部的m個點,共(m+4)個點為頂點,可把四邊形分割成

        個互不重疊的小三角形.

問題解決:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個點作為頂點,可把原n邊形分割成

        個互不重疊的小三角形.

實際應用:以八邊形的8個頂點和它內(nèi)部的2012個點,共2020個頂點,可把八邊形分割成多少個互

不重疊的小三角形?(要求列式計算)

 

【答案】

探究三: 7,分割示意圖見解析;探究四:2m+1;探究拓展:2m+2;問題解決: 2m+n-2;實際應用:4030

【解析】解:探究三: 7。分割示意圖如下(答案不唯一):

探究四:三角形內(nèi)部1個點時,共分割成3部分,3=3+2(1-1),

三角形內(nèi)部2個點時,共分割成5部分,5=3+2(2-1),

三角形內(nèi)部3個點時,共分割成7部分,7=3+2(3-1),

…,

所以,三角形內(nèi)部有m個點時,共分割成3+2(m-1)=2m+1部分。

探究拓展:2m+2。

問題解決: 2m+n-2。

實際應用:把n=8,m=2012代入上述代數(shù)式,得

2m+n-2=2×2012+8-2=4024+8-2=4030。

探究三:分三角形內(nèi)部三點共線與不共線兩種情況作出分割示意圖,查出分成的部分即可。

探究四:根據(jù)前三個探究不難發(fā)現(xiàn),三角形內(nèi)部每增加一個點,分割部分增加2部分,根據(jù)此規(guī)律寫出(m+3)個點分割的部分數(shù)即可。

探究拓展:類似于三角形的推理寫出規(guī)律整理即可得解。

問題解決:根據(jù)規(guī)律,把相應的點數(shù)換成m、n整理即可得解。

實際應用:把公式中的相應的字母,換成具體的數(shù)據(jù),然后計算即可得解。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•青島)問題提出:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個點作為頂點,可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊性的策略,先從簡單和具體的情形入手:
探究一:以△ABC的三個頂點和它內(nèi)部的1個點P,共4個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?
如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的三個頂點和它內(nèi)部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?
在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個點Q,那么點Q的位置會有兩種情況:
一種情況,點Q在圖①分割成的某個小三角形內(nèi)部.不妨假設(shè)點Q在△PAC內(nèi)部,如圖②;
另一種情況,點Q在圖①分割成的小三角形的某條公共邊上.不妨假設(shè)點Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個不重疊的小三角形.
探究三:以△ABC的三個頂點和它內(nèi)部的3個點P、Q、R,共6個點為頂點可把△ABC分割成
7
7
個互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個頂點和它內(nèi)部的m個點,共(m+3)個頂點可把△ABC分割成
(2m+1)
(2m+1)
個互不重疊的小三角形.
探究拓展:以四邊形的4個頂點和它內(nèi)部的m個點,共(m+4)個頂點可把四邊形分割成
(2m+2)
(2m+2)
個互不重疊的小三角形.
問題解決:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個頂點可把△ABC分割成
(2m+n-2)
(2m+n-2)
個互不重疊的小三角形.
實際應用:以八邊形的8個頂點和它內(nèi)部的2012個點,共2020個頂點,可把八邊形分割成多少個互不重疊的小三角形?(要求列式計算)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

問題提出:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個點為頂點,可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡單和具體的情形入手,通過觀察、分析,最后歸納出結(jié)論:
探究一:以△ABC的三個頂點和它內(nèi)部的一個點P,共4個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?
如圖(1),顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的三個頂點和它內(nèi)部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?

在探究一的基礎(chǔ)上,我們可看作在圖(1)△ABC的內(nèi)部,再添加1個點Q,那么點Q的位置會有兩種情況:一種情況,點Q在圖(1)分割成的某個小三角形內(nèi)部,不妨假設(shè)點Q在△PAC內(nèi)部,如圖(2);另一種情況,點Q在圖(1)分割成的小三角形的某條公共邊上,不妨假設(shè)點Q在P上,如圖(3);顯然,不管哪種情況,都可把△ABC分割成5個互不重疊的小三角形.
探究三:以△ABC的三個頂點和它內(nèi)部的3個點,共6個點為頂點可把△ABC分割成
7
7
個互不重疊的小三角形.
探究四:以△ABC的三個頂點和它內(nèi)部的m個點,共(m+3)個點為頂點可把△ABC分割成
3+2(m-1)或2m+1
3+2(m-1)或2m+1
個互不重疊的小三角形.
探究拓展:以四邊形的4個頂點和它內(nèi)部的m個點,共(m+4)個點為頂點,可把四邊形分割成
4+2(m-1)或2m+2
4+2(m-1)或2m+2
個互不重疊的小三角形.
問題解決:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個點為頂點,可把△ABC分割成
n+2(m-1)或2m+n-
n+2(m-1)或2m+n-
個互不重疊的小三角形.
實際應用:以八邊形的8個頂點和它內(nèi)部的m個點,共(m+8)個點為頂點,可把八邊形分割成2013個互不重疊的小三角形嗎?若行,求出m的值;若不行,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(山東青島卷)數(shù)學(帶解析) 題型:解答題

問題提出:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個點作為頂
點,可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡單和具體的情形入手:
探究一:以△ABC的3個頂點和它內(nèi)部的1個點P,共4個點為頂點,可把△ABC分割成多少個互
不重疊的小三角形?如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的3個頂點和它內(nèi)部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個
互不重疊的小三角形?
在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個點Q,那么點Q的位置會有兩種
情況:
一種情況,點Q在圖①分割成的某個小三角形內(nèi)部.不妨設(shè)點Q在△PAC的內(nèi)部,如圖②;
另一種情況,點Q在圖①分割成的小三角形的某條公共邊上.不妨設(shè)點Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個互不重疊的小三角形.
探究三:以△ABC的三個頂點和它內(nèi)部的3個點P、Q、R,共6個點為頂點,可把△ABC分割成     
互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個頂點和它內(nèi)部的m個點,共(m+3)個點為頂點,可把△ABC分割成       
互不重疊的小三角形.
探究拓展:以四邊形的4個頂點和它內(nèi)部的m個點,共(m+4)個點為頂點,可把四邊形分割成
       個互不重疊的小三角形.
問題解決:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個點作為頂點,可把原n邊形分割成
       個互不重疊的小三角形.
實際應用:以八邊形的8個頂點和它內(nèi)部的2012個點,共2020個頂點,可把八邊形分割成多少個互
不重疊的小三角形?(要求列式計算)

查看答案和解析>>

科目:初中數(shù)學 來源:山東省中考真題 題型:解答題

問題提出:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個點作為頂點,可把原n邊形分割成多少個互不重疊的小三角形?問題探究:為了解決上面的問題,我們將采取一般問題特殊性的策略,先從簡單和具體的情形入手:
探究一:以△ABC的三個頂點和它內(nèi)部的1個點P,共4個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.探究二:以△ABC的三個頂點和它內(nèi)部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?在探究一的基礎(chǔ)上,我們可看作在圖①△ABC的內(nèi)部,再添加1個點Q,那么點Q的位置會有兩種情況:一種情況,點Q在圖①分割成的某個小三角形內(nèi)部.不妨假設(shè)點Q在△PAC內(nèi)部,如圖②;另一種情況,點Q在圖①分割成的小三角形的某條公共邊上.不妨假設(shè)點Q在PA上,如圖③.顯然,不管哪種情況,都可把△ABC分割成5個不重疊的小三角形.
探究三:以△ABC的三個頂點和它內(nèi)部的3個點P、Q、R,共6個點為頂點可把△ABC分割成 (     )個互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個頂點和它內(nèi)部的m個點,共(m+3)個頂點可把△ABC分割成(     )個互不重疊的小三角形.
探究拓展:以四邊形的4個頂點和它內(nèi)部的m個點,共(m+4)個頂點可把四邊形分割成(     )個互不重疊的小三角形.
問題解決:以n邊形的n個頂點和它內(nèi)部的m個點,共(m+n)個頂點可把△ABC分割成(      )個互不重疊的小三角形.
實際應用:以八邊形的8個頂點和它內(nèi)部的2012個點,共2020個頂點,可把八邊形分割成多少個互不重疊的小三角形?(要求列式計算)

查看答案和解析>>

同步練習冊答案