方程2x-3=3與方程1-
3a-x3
=0
的解一樣,則a=
 
分析:可以分別解出兩方程的解,兩解相等,就得到關(guān)于a的方程,從而可以求出a的值.
解答:解:解方程2x-3=3得x=3,
解方程1-
3a-x
3
=0
得x=3a-3,
由題意得:3a-3=3,
解得:a=2.
故填:2.
點評:本題解決的關(guān)鍵是能夠求解關(guān)于x的方程,要正確理解方程解的含義.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程 x1 x2 x1+x2 x1.x2
(1)
0
0
2
2
2
2
0
0
(2)
-4
-4
1
1
-3
-3
-4
-4
(3)
2
2
3
3
5
5
6
6
請同學們仔細觀察方程的解,你會發(fā)現(xiàn)方程的解與方程中未知數(shù)的系數(shù)和常數(shù)項之間有一定的關(guān)系.
一般的,對于關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根為x1、x2
則x1+x2=
-p
-p
,x1.x2=
q
q

(2)運用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為
B
B

A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的兩根,利用上述結(jié)論,不解方程,求x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

探究發(fā)現(xiàn):
解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程 x1 x2 x1+x2 x1•x2
(1)
(2)
(3)
(1)請用文字語言概括你的發(fā)現(xiàn).
(2)一般的,對于關(guān)于x的方程x2+px+q=0的兩根為x1、x2,則x1+x2=
-p
-p
,x1•x2
q
q

(3)運用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為
B
B

A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的兩根,試求(1+x1)(1+x2)和x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

探究發(fā)現(xiàn):
解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方 程x1x2x1+x2x1•x2
(1)
(2)
(3)
(1)請用文字語言概括你的發(fā)現(xiàn).
(2)一般的,對于關(guān)于x的方程x2+px+q=0的兩根為x1、x2,則x1+x2=______,x1•x2______.
(3)運用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為______
A.-2   B.2   C.-7   D.7
②已知x1,x2是方程x2-x-3=0的兩根,試求(1+x1)(1+x2)和x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方 程x1x2x1+x2x1.x2
(1)________________________
(2)________________________
(3)________________________
請同學們仔細觀察方程的解,你會發(fā)現(xiàn)方程的解與方程中未知數(shù)的系數(shù)和常數(shù)項之間有一定的關(guān)系.
一般的,對于關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根為x1、x2
則x1+x2=______,x1.x2=______.
(2)運用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為______
A.-2   B.2   C.-7   D.7
②已知x1,x2是方程x2-x-3=0的兩根,利用上述結(jié)論,不解方程,求x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年甘肅省平?jīng)鍪星f浪縣韓店中學九年級(上)期末數(shù)學試卷(二)(解析版) 題型:解答題

探究發(fā)現(xiàn):
解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程x1x2x1+x2x1•x2
(1)
(2)
(3)
(1)請用文字語言概括你的發(fā)現(xiàn).
(2)一般的,對于關(guān)于x的方程x2+px+q=0的兩根為x1、x2,則x1+x2=______,x1•x2______.
(3)運用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為______
A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的兩根,試求(1+x1)(1+x2)和x12+x22的值.

查看答案和解析>>

同步練習冊答案