【題目】如圖,等邊△ABC的邊長為4,AD是BC邊上的中線,F是AD邊上的動點,E是AC邊上一點,若AE=2,當(dāng)EF+CF取得最小值時,則∠BCF的度數(shù)為_____.
【答案】30°
【解析】
過E作EM∥BC,交AD于N,連接CM交AD于F,連接EF,推出M為AB中點,求出E和M關(guān)于AD對稱,根據(jù)等邊三角形性質(zhì)求出∠ACM,即可求出答案.
過E作EM∥BC,交AD于N,
∵AC=4,AE=2,
∴EC=2=AE,
∴AM=BM=2,
∴AM=AE,
∵AD是BC邊上的中線,△ABC是等邊三角形,
∴AD⊥BC,
∵EM∥BC,
∴AD⊥EM,
∵AM=AE,
∴E和M關(guān)于AD對稱,
連接CM交AD于F,連接EF,
則此時EF+CF的值最小,
∵△ABC是等邊三角形,
∴∠ACB=60°,AC=BC,
∵AM=BM,
∴∠BCF=∠ECF=∠ACB=30°,
故答案為:30°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖:
已知:線段AB,BC,∠ABC=90°,求作:矩形ABCD.
下面是小敏設(shè)計的尺規(guī)作圖過程:
做法:①以點C為圓心,AB長為半徑畫;
②以點A為圓心,BC長為半徑畫;
③兩弧在BC上方交于點D連接AD,CD,四邊形ABCD即為所求
根據(jù)小敏設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī)補全圖形;(保留作圖痕跡)
(2)完成下面的證明
證明:∵AB= ,CB= ,
∴四邊形ABCD為平行四邊形( )
又∵∠ABC90°
∴平行四邊形ABCD為矩形( )(填推理依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形杯子高9cm,底面周長18cm,在杯口點B處有一滴蜂蜜,此時螞蟻在杯外底部與蜂蜜相對的點A處.
(1)求螞蟻從A到B處杯壁爬行吃到蜂蜜的最短距離;
(2)若螞蟻出發(fā)時發(fā)現(xiàn)有蜂蜜正以每秒鐘1cm沿杯內(nèi)壁下滑,螞蟻出發(fā)后3秒鐘吃到了蜂蜜,求螞蟻的平均速度至少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結(jié)論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結(jié)論正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列五個命題:兩個端點能夠重合的弧是等弧;圓的任意一條弧必定把圓分成劣弧和優(yōu)弧兩部分經(jīng)過平面上任意三點可作一個圓;任意一個圓有且只有一個內(nèi)接三角形三角形的外心到各頂點距離相等.其中真命題有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD,點E在邊AD上,連接BE將△ABE沿BE翻折,得到△MBE,M點剛好在CD邊上,若AD長為2,AB長為,則AE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于點E,連接CE.
(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若E是弧AC的中點,⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形中,,,為上一個動點,,連接并延長交延長線于點.
(1)如圖1,求證:;
(2)當(dāng)為直角三角形時,求的長;
(3)當(dāng)為的中點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com