【題目】如圖,ABC中,∠BAC=60°,ABC、ACB的平分線交于E,DAE延長線上一點,且∠BDC=120°.下列結論:①∠BEC=120°;DB=DE;③∠BDE=2BCE.其中正確結論的個數(shù)為( 。

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】

根據(jù)三角形內角和等于180°求出∠ABC+∠ACB,再根據(jù)角平分線的定義求出∠EBC+∠ECB,然后求出∠BEC=120°,判斷①正確;過點D作DF⊥AB于F,DG⊥AC的延長線于G,根據(jù)角平分線上的點到角的兩邊的距離相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角邊角”證明△BDF和△CDG全等,根據(jù)全等三角形對應邊相等可得BD=CD,再根據(jù)等邊對等角求出∠DBC=30°,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和以及角平分線的定義求出∠DBE=∠DEB,根據(jù)等角對等邊可得BD=DE,判斷②正確,再求出B,C,E三點在以D為圓心,以BD為半徑的圓上,根據(jù)同弧所對的圓周角等于圓心角的一半可得∠BDE=2∠BCE,判斷③正確.

∵∠BAC=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵BE、CE分別為∠ABC、∠ACB的平分線,
∴∠EBC= ∠ABC,∠ECB=∠ACB,
∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,
∴∠BEC=180°-(∠EBC+∠ECB)=180°-60°=120°,故①正確;
如圖,過點D作DF⊥AB于F,DG⊥AC的延長線于G,


∵BE、CE分別為∠ABC、∠ACB的平分線,
∴AD為∠BAC的平分線,
∴DF=DG,
∴∠FDG=360°-90°×2-60°=120°,
又∵∠BDC=120°,

∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°,
∴∠BDF=∠CDG,
∵在△BDF和△CDG中,

∴△BDF≌△CDG(ASA),

∴DB=CD,
∴∠DBC=(180°-120°)=30°,
∴∠DBE=∠DBC+∠CBE=30°+∠CBE,
∵BE平分∠ABC,AE平分∠BAC,
∴∠ABE=∠CBE,∠BAE=∠BAC=30°,
根據(jù)三角形的外角性質,∠DEB=∠ABE+∠BAE=∠ABE+30°,
∴∠DBE=∠DEB,
∴DB=DE,故②正確;
∵DB=DE=DC,
∴B,C,E三點在以D為圓心,以BD為半徑的圓上,∴∠BDE=2∠BCE,故③正確;
綜上所述,正確的結論有①②③共3個.
故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】同學們都知道,|2-(-1)|表示2-1的差的絕對值,實際上位可理解為在數(shù)軸上正數(shù)2對應的點與負數(shù)一1對應的點之間的距離,試探索:

(1)|2-(-1)|=______;如果|x-1|=2,則x=______.

(2)|x-2|+|x-4|的最小值,并求此時x的取值范圍;

(3)由以上探素已知(|x-2|+|x+4|)(|y-1|+|y-6|)=10,x+y的最大值與最小值;

(4)由以上探索及猜想,計算|x-1|+|x-2|+|x-3|+…+|x-2017|+|x-2018|的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示.設點AB,C所對應數(shù)的和是p

1)若以B為原點,寫出點A,C所對應的數(shù),并計算p的值;若以C為原點,p又是多少?

2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等腰三角形,∠C=90°,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE,DF,EF.在此運動變化過程中,有下列結論:
①DE=DF;
②∠EDF=90°;
③四邊形CEDF不可能為正方形;
④四邊形CEDF的面積保持不變.
一定成立的結論有(把你認為正確的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列語句畫圖,并回答相應問題:已知:∠AOB.

(1)作射線 OA 的反向延長線 OE;

(2)向上作射線 OC,使∠AOC=90°;

(3)作射線 OD,使∠COD=∠AOB;

(4)圖中共有 個角;(包括平角)

(5)銳角是 ,鈍角是 ,直角是 ,平角是 ;

(6)你能找出圖中所有相等的角嗎(除∠COD=∠AOB 外)盡可能都寫出來;

(7)與∠COD 互余的角有 個,互補的角有 個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一個四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點B落在AD邊上的B'點,AE是折痕。

(1)試判斷B'E與DC的位置關系并說明理由。

(2)如果∠C=130°,求∠AEB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PB、AB,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某兒童游樂園門票價格規(guī)定如下表:

購票張數(shù)

1~50

51~100

100張以上

每張票的價格

13

11

9

某校七年級(1)、(2)兩個班共102人今年6.1兒童節(jié)去游該游樂園,其中(1)班人數(shù)較少,不足50人。經估算,如果兩個班都以班為單位購票,則一共應付1218元。問:

(1)兩個班各有多少學生?

(2)如果兩班聯(lián)合起來,作為一個團體購票,可以節(jié)省多少錢?

查看答案和解析>>

同步練習冊答案