如圖,一貨輪在海上由西往東行駛,從A、B兩個小島中間穿過.當貨輪行駛到點P處時,測得小島A在正北方向,小島B位于南偏東24.5°方向;貨輪繼續(xù)前行12海里,到達點Q處,又測得小島A位于北偏西49°方向,小島B位于南偏西41°方向.
(1)線段BQ與PQ是否相等?請說明理由;
(2)求A,B間的距離.(參考數(shù)據(jù)cos41°≈0.75)
(1)相等,理由見解析;(2)20海里.

試題分析:(1)分別求出∠QPB和∠QBP的度數(shù),可得∠BPQ=∠PBQ,即可得出PQ=BQ;
(2)在Rt△APQ中,根據(jù)PQ的長度和∠AQP,利用三角函數(shù)求出AQ的長度,然后根據(jù)已知角的度數(shù)得出∠AQB=90°,在Rt△AQB中,解直角三角形,即可求得AB的長度.
(1)線段BQ與PQ相等.
證明如下:∵∠PQB=90°-41°=49°,
∴∠BPQ=90°-24.5°=65.5°,
∠PBQ=180°-49°-65.5°=65.5°,
∴∠BPQ=∠PBQ,
∴BQ=PQ;
(2)在Rt△APQ中,
∵∠PQA=90°-49°=41°,
∴AQ=(海里),
又∵∠AQB=180°-49°-41°=90°,
∴△ABQ是直角三角形,
∵BQ=PQ=12海里,
∴AB2=AQ2+BQ2=162+122
∴AB=20(海里),
答:A、B的距離為20海里.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某廣場一燈柱AB被一鋼纜CD固定,CD與地面成37°夾角,且CB=4米.
(1)求鋼纜CD的長度;
(2)若AD=2.1米,燈的頂端E距離A處1.8米,且∠EAB=120°,則燈的頂端E距離地面多少米? (參考數(shù)據(jù):sing37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯子斜靠在與地面垂直(垂足為O)的墻上,當梯子位于AB位置時,它與地面所成的角∠ABO=60°;當梯子底端向右滑動1m(即BD=1m)到達CD位置時,它與地面所成的角∠CDO=51°18′,求梯子的長.
(參考數(shù)據(jù):sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,∠AOB=30°,OP平分∠AOB,PC⊥OB于點C.若OC=2,則PC的長是  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知AD//BC,AB⊥AD,點E點F分別在射線AD,射線BC上,若點E與點B關于AC對稱,點E點F關于BD對稱,AC與BD相交于點G,則(  )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:(i=1:是指坡面的鉛直高度BH與水平寬度AH的比),AB=10米,AE=15米.求廣告牌CD的高度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,A市在B市的北偏東60°方向,在C市的西北方向,D市在B市的正南方向.已知A、B兩市相距120km,B、D兩市相距100 km..問:A市與C、D兩市分別相距多少千米?(結果精確到1 km)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點D落在點D′處,則重疊部分△AFC的面積為________________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

超速行駛是引發(fā)交通事故的主要原因之一.上周末,小明和三位同學嘗試用自己所學的知識檢測車速,如圖,觀測點設在A處,離益陽大道的距離(AC)為30米.這時,一輛小轎車由西向東勻速行駛,測得此車從B處行駛到C處所用的時間為8秒,∠BAC=75°.

(1)求B、C兩點的距離;
(2)請判斷此車是否超過了益陽大道60千米/小時的限制速度?
(計算時距離精確到1米,參考數(shù)據(jù):sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小時≈16.7米/秒)

查看答案和解析>>

同步練習冊答案