【題目】為了從甲、乙兩名選手中選拔一人參加射擊比賽,現(xiàn)對(duì)他們進(jìn)行一次測(cè)驗(yàn),兩個(gè)人在相同條件下各射靶10次,為了比較兩人的成績(jī),制作了如下統(tǒng)計(jì)圖表:
甲、乙射擊成績(jī)統(tǒng)計(jì)表
平均數(shù) | 中位數(shù) | 方差 | 命中10環(huán)的次數(shù) | |
甲 | 7 | |||
乙 | 1 |
(1)請(qǐng)補(bǔ)全上述圖表(請(qǐng)直接在表中填空和補(bǔ)全折線圖);
(2)如果規(guī)定成績(jī)較穩(wěn)定者勝出,你認(rèn)為誰將勝出?說明你的理由;
(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評(píng)判規(guī)則?為什么?
【答案】(1)見解析;(2)甲勝出;(3)見解析.
【解析】試題分析:(1)根據(jù)折線統(tǒng)計(jì)圖列舉出乙的成績(jī),計(jì)算出甲的中位數(shù),方差,以及乙平均數(shù),中位數(shù)及方差,補(bǔ)全即可;
(2)計(jì)算出甲乙兩人的方差,比較大小即可做出判斷;
(3)希望甲勝出,規(guī)則改為9環(huán)與10環(huán)的總數(shù)大的勝出,因?yàn)榧?/span>9環(huán)與10環(huán)的總數(shù)為4環(huán).
試題解析:(1)如圖所示.
甲、乙射擊成績(jī)統(tǒng)計(jì)表
平均數(shù) | 中位數(shù) | 方差 | 命中10環(huán)的次數(shù) | |
甲 | 7 | 7 | 4 | 0 |
乙 | 7 | 7.5 | 5.4 | 1 |
(2)由甲的方差小于乙的方差,甲比較穩(wěn)定,故甲勝出.
(3)如果希望乙勝出,應(yīng)該制定的評(píng)判規(guī)則為:平均成績(jī)高的勝出;如果平均成績(jī)相同,則隨著比賽的進(jìn)行,發(fā)揮越來越好者或命中滿環(huán)(10環(huán))次數(shù)多者勝出.因?yàn)榧、乙的平均成?jī)相同,隨著比賽的進(jìn)行,乙的射擊成績(jī)?cè)絹碓胶?/span>(回答合理即可).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛在課外書中看到這樣一道有理數(shù)的混合運(yùn)算題:
計(jì)算:
她發(fā)現(xiàn),這個(gè)算式反映的是前后兩部分的和,而這兩部分之間存在著某種關(guān)系,利用這種關(guān)系,他順利地解答了這道題。
(1)前后兩部分之間存在著什么關(guān)系?
(2)先計(jì)算哪步分比較簡(jiǎn)便?并請(qǐng)計(jì)算比較簡(jiǎn)便的那部分。
(3)利用(1)中的關(guān)系,直接寫出另一部分的結(jié)果。
(4)根據(jù)以上分析,求出原式的結(jié)果。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好改善河流的水質(zhì),治污公司決定購(gòu)買10臺(tái)污水處理設(shè)備現(xiàn)有A,B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:經(jīng)調(diào)查:購(gòu)買一臺(tái)A型設(shè)備比購(gòu)買一臺(tái)B型設(shè)備多2萬元,購(gòu)買2臺(tái)A型設(shè)備比購(gòu)買3臺(tái)B型設(shè)備少6萬元.
A型 | B型 | |
價(jià)格萬元臺(tái) | a | b |
處理污水量噸月 | 240 | 200 |
求a,b的值;
治污公司經(jīng)預(yù)算購(gòu)買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購(gòu)買方案;
在的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請(qǐng)你為治污公司設(shè)計(jì)一種最省錢的購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OE平分∠AOD,OF平分∠BOD.
(1)若∠AOC=70°,求∠DOE和∠EOF的度數(shù);
(2)請(qǐng)寫出圖中∠AOD的補(bǔ)角和∠AOE的余角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2 為邊長(zhǎng)的正方形DEFG的一邊GD在直線AB上,且點(diǎn)D與點(diǎn)A重合,現(xiàn)將正方形DEFG沿A﹣B的方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)D與點(diǎn)B重合時(shí)停止,則在這個(gè)運(yùn)動(dòng)過程中,正方形DEFG與△ABC的重合部分的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,點(diǎn)A、B、C、M、N都在格點(diǎn)上(不寫作法)
(1)作△ABC關(guān)于直線MN對(duì)稱的△A’B’C’:
(2)將△ABC向上平移兩個(gè)單位得△A1B1C1,畫出△A1B1C1;
(3)在直線MN上找一點(diǎn)P,使AP+CP的值最。
(4)若網(wǎng)格中最小正方形的邊長(zhǎng)為1,直接寫出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在ABCD中,點(diǎn)E,F(xiàn)在對(duì)角線BD上,且BE=DF,
求證:(1)AE=CF;(2)四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】梅嶺中學(xué)為了解“課程選修”的情況,對(duì)報(bào)名參加“藝術(shù)欣賞”,“科技制作”,“數(shù)學(xué)思維”,“閱讀寫作”這四個(gè)選修項(xiàng)目的學(xué)生(每人限報(bào)一課)進(jìn)行抽樣調(diào)查,下面是根據(jù)收集的數(shù)據(jù)繪制的不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了______名學(xué)生,扇形統(tǒng)計(jì)圖中“藝術(shù)欣賞”部分的圓心角是______度;
(2)請(qǐng)把這個(gè)條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)現(xiàn)該校共有800名學(xué)生報(bào)名參加這四個(gè)選修項(xiàng)目,請(qǐng)你估計(jì)其中有多少名學(xué)生選修 “科技制作”項(xiàng)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),過A點(diǎn)作AG∥DB,交CB的延長(zhǎng)線于點(diǎn)G.
(1)求證:DE∥BF;
(2)若∠G=90,求證:四邊形DEBF是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com