【題目】如圖所示,直線l過正方形ABCD的頂點B,點A、C到直線l的距離分別是AE=1,CF=2,則EF長為

【答案】3

【解析】

試題分析:根據(jù)正方形的性質(zhì)得AB=BC,ABC=90°,再根據(jù)等角的余角相等得到EAB=FBC,則可根據(jù)“ASA”判斷ABE≌△BCF,所以BE=CF=2,進而求出EF的長.

解:四邊形ABCD為正方形,

AB=BCABC=90°,

AEBE,CFBF,

∴∠AEB=BFC=90°,

∴∠EAB+ABE=90°,ABE+FBC=90°,

∴∠EAB=FBC

ABEBCF中,

∴△ABE≌△BCF(ASA),

BE=CF=2,AE=BF=1,

EF=BE+BF=3

故答案為3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AB為半圓O的直徑,C為圓上一點,AD平分∠BAC交半圓于點D,過點D作DE⊥AC,DE交AC的延長線于點E.

(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑為2,DE= ,求線段AC的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在線段AB上,點M、N分別是ACBC的中點.

,求線段MN的長;

C為線段AB上任一點,滿足,其它條件不變,你能猜想MN的長度嗎?并說明理由,你能用一句簡潔的話描述你發(fā)現(xiàn)的結論嗎?

C在線段AB的延長線上,且滿足cm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,寫出你的結論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,D是AC上一點,E是AB上一點,且∠AED=∠C.
(1)求證:△AED∽△ACB;
(2)若AB=6,AD=4,AC=5,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,點P沿線段AB從點A向點B運動,設AP=x,
(1)求AD的長;
(2)點P在運動過程中,是否存在以A、P、D為頂點的三角形與以P、C、B為頂點的三角形相似?若存在,求出x的值;若不存在,請說明理由;
(3)直接寫出:當△CDP為等腰三角形時x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=65°∠C=45°,AD是BC邊上的高,AE是∠BAC的平線,求∠DAE的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將矩形紙片ABCD按如圖所示的方式折疊,恰好得到菱形AECF.若AB=3,則菱形AECF的面積為( )

A.1
B.
C.
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知EF分別為正方形ABCD的邊BC、CD上的點,且∠EAF45°

1)如圖①求證:BE+DFEF;

2)連接BD分別交AE、AFMN,

①如圖②,若AB6,BM3,求MN

②如圖③,若EFBD,求證:MNCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲騎自行車從A地出發(fā)前往B地,同時乙步行從B地出發(fā)前往A地,如圖的折線OPQ和線段EF,分表表示甲、乙兩人與A地的距離與他們所行時間之間的函數(shù)關系,且OPEF相交于點M

求線段OP對應的x的函數(shù)關系式;

x的函數(shù)關系式以及A,B兩地之間的距離;

求經(jīng)過多少小時,甲、乙兩人相距3km

查看答案和解析>>

同步練習冊答案