【題目】如圖1,點A、D在y軸正半軸上,點B、C分別在x軸上,CD平分∠ACB,與y軸交于D點,∠CAO=90°-∠BDO.
(1)求證:AC=BC:
(2)如圖2,點C的坐標為(4,0),點E為AC上一點,且∠DEA=∠DBO,求BC+EC的長;
(3)如圖3,過D作DF⊥AC于F點,點H為FC上一動點,點G為OC上一動點,當H在FC上移動、點G在OC上移動時,始終滿足∠GDH=∠GDO+∠FDH,試判斷FH、GH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.
(圖3)
【答案】(1)證明見解析;(2)8;(3)GH=FH+OG,證明見解析.
【解析】試題分析: (1)由題意∠CAO=90°-∠BDO,可知∠CAO=∠CBD,CD平分∠ACB與y軸交于D點,所以可由AAS定理證明△ACD≌△BCD,由全等三角形的性質(zhì)可得AC=BC;
(2)過D作DN⊥AC于N點,可證明Rt△BDO≌Rt△EDN、△DOC≌△DNC,因此,BO=EN、OC=NC,所以,BC+EC=BO+OC+NC-NE=2OC,即可得BC+EC的長;
(3)在x軸的負半軸上取OM=FH,可證明△DFH≌△DOM、△HDG≌△MDG,因此,MG=GH,所以,GH=OM+OG=FH+OG,即可證明所得結(jié)論.
試題解析:
(1)證明:∵∠CAO=90°-∠BDO,
∴∠CAO=∠CBD.
又∵∠ACD=∠BCD,CD=CD,
∴△ACD≌△BCD(AAS).
∴AC=BC.
(2)解:過D作DN⊥AC于N點,如圖所示:
∵∠ACD=∠BCD,∠DOC=∠DNC=90°,
CD=CD
∴△DOC≌△DNC(AAS),
∴DO=DN,OC=NC.
又∵∠DEA=∠DBO,∠DOB=∠DNC=90°
∴△BDO≌△EDN(AAS),
∴BO=EN.
∴BC+EC=BO+OC+NC-NE=2OC=8.
(3)GH=FH+OG.
證明:由(1)知:DF=DO,
在x軸的負半軸上取OM=FH,連接DM,
如圖所示:
在△DFH和△DOM中
∴△DFH≌△DOM(SAS).
∴DH=DM,∠l=∠ODM.
∴∠GDH=∠1+∠2=∠ODM+∠2=∠GDM.
在△HDG和△MDG中
∴△HDG≌△MDG(SAS).
∴MG=GH,
∴GH=OM+OG=FH+OG.
點睛: 本題主要考查了全等三角形的判定及其性質(zhì),做題時添加了輔助線,正確作出輔助線是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AD、AE分別是△ABC的高和角平分線.
(1)若∠B=30°,∠C=50°,求∠DAE的度數(shù).
(2)試問∠DAE與∠C﹣∠B有怎樣的數(shù)量關(guān)系?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知拋物線經(jīng)過點A(l, 0),B(一3,0),C(0,3)三點.
(1)求拋物線的解析式;
(2)在x軸下方的拋物線上,是否存在點M,使得?若存在求出M點的坐標;若不存在,請說明理由;
(3)點P是位于直線BC上方的拋物線上的一個動點,是否存在點P,使的面積最大?若存在,求出P的坐標及的最大值:若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段CD是由線段AB平移得到的,點A(–1,4)的對應(yīng)點為C(4,7),則點B(–4,–1)的對應(yīng)點D的坐標為( )
A. (1,2) B. (2,9) C. (5,3) D. (–9,–4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段 AB=30cm,點 P 沿線段 AB 自點 A 向點 B 以 2cm/s 的速度運動,同時點 Q 沿線段 BA 自點 B 向點 A 以 3cm/s 的速度運動,則秒鐘后,P、Q 兩點相距 10cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小龍平時愛觀察也喜歡動腦,他看到路邊的建筑和電線架等,發(fā)現(xiàn)了一個現(xiàn)象:一切需要穩(wěn)固的物品都是由三角形這個圖形構(gòu)成的,當時他就思考,數(shù)學(xué)王國中不僅只有三角形,為何偏偏用三角形穩(wěn)固它們呢?請你用所學(xué)的數(shù)學(xué)知識解釋這一現(xiàn)象的依據(jù)為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com