【題目】如圖,AB為半圓O在直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DECD,正確的有( )
A.2個 B.3個 C.4個 D.5個
【答案】C
【解析】
試題分析:連接OE,由AD,DC,BC都為圓的切線,根據(jù)切線的性質(zhì)得到三個角為直角,且利用切線長定理得到DE=DA,CE=CB,由CD=DE+EC,等量代換可得出CD=AD+BC,選項②正確;由AD=ED,OD為公共邊,利用HL可得出直角三角形ADO與直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而這四個角之和為平角,可得出∠DOC為直角,選項①正確;由∠DOC與∠DEO都為直角,再由一對公共角相等,利用兩對對應(yīng)角相等的兩三角形相似,可得出三角形DEO與三角形DOC相似,由相似得比例可得出OD2=DECD,選項⑤正確;由△AOD∽△BOC,可得===,選項③正確;由△ODE∽△OEC,可得,選項④錯誤.
解:連接OE,如圖所示:
∵AD與圓O相切,DC與圓O相切,BC與圓O相切,
∴∠DAO=∠DEO=∠OBC=90°,
∴DA=DE,CE=CB,AD∥BC,
∴CD=DE+EC=AD+BC,選項②正確;
在Rt△ADO和Rt△EDO中,,
∴Rt△ADO≌Rt△EDO(HL),
∴∠AOD=∠EOD,
同理Rt△CEO≌Rt△CBO,
∴∠EOC=∠BOC,
又∠AOD+∠DOE+∠EOC+∠COB=180°,
∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,選項①正確;
∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,
∴△EDO∽△ODC,
∴=,即OD2=DCDE,選項⑤正確;
∵∠AOD+∠COB=∠AOD+∠ADO=90°,
∠A=∠B=90°,
∴△AOD∽△BOC,
∴===,選項③正確;
同理△ODE∽△OEC,
∴,選項④錯誤;
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=x2-4x-5與x軸分別交于A、B(A在B的左邊),與y軸交于點C,直線AP與y軸正半軸交于點M,交拋物線于點P,直線AQ與y軸負半軸交于點N,交拋物線于點Q,且OM=ON,過P、Q作直線l
(1) 探究與猜想:
① 取點M(0,1),直接寫出直線l的解析式
取點M(0,2),直接寫出直線l的解析式
② 猜想:
我們猜想直線l的解析式y(tǒng)=kx+b中,k總為定值,定值k為__________,請取M的縱坐標為n,驗證你的猜想
(2) 如圖2,連接BP、BQ.若△ABP的面積等于△ABQ的面積的3倍,試求出直線l的解析式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方程(x-1)(x+3)=12化為ax2+bx+c=0的形式后,a、b、c的值為( 。
A.1、2、-15
B.1、-2、-15
C.-1、-2、-15
D.-1、2、-15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(a,0)和B(0,b)滿足(a﹣4)2+|b﹣6|=0,分別過點A、B作x軸、y軸的垂線交于點C,如圖,點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣B﹣C﹣A﹣O的路線移動.
(1)寫出A、B、C三點的坐標;
(2)當點P移動了6秒時,描出此時P點的位置,并寫出點P的位置;
(3)連結(jié)(2)中B、P兩點,將線段BP向下平移h個單位(h>0),得到B′P′,若B′P′將四邊形OACB的周長分成相等的兩部分,求h的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題。
(1)計算: +| ﹣ |﹣( )2﹣
(2)已知2a+1的平方根是±3,3a+b﹣1的算術(shù)平方根是4,求 a+5b的立方根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的方程(k+4)x2-2=0是關(guān)于x的一元二次方程,則k的取值范圍是( 。
A.k≠0
B.k≥4
C.k=-4
D.k≠-4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com