精英家教網 > 初中數學 > 題目詳情

二次函數y=ax2+bx+c的圖象如圖所示,則下面四個結論中正確的結論有
①ac<0;②ab>0;③2a<b;④a+c>b;
⑤4a+2b+c>0;⑥a+b+c>0.


  1. A.
    兩個
  2. B.
    三個
  3. C.
    四個
  4. D.
    五個
A
分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷
解答:①錯誤,由函數圖象開口向上及與y軸的交點在y軸的負半軸可知,a<0,c<0,則ac>0;
②錯誤,由函數圖象開口向下可知,a<0,由對稱軸在x軸的正半軸上可知,->0,由于a<0,故b>0,ab<0;
③正確,由于a<0,b>0,所以2a<b;
④錯誤,由于a<0,c<0,b>0,所以a+c<0,故a+c<b;
⑤錯誤,由函數圖象可知對稱軸x=-0,0<-<1,因為a<0,所以4a+2b<0,因為c<0,所以4a+2b+c<0;
⑥正確,因為x=1時,由函數的圖象可知y>0,所以a+b+c>0.
故選A.
點評:主要考查圖象與二次函數系數之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數與方程之間的轉換,根的判別式的熟練運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網點C(0,
3
)
,當x=-4和x=2時,二次函數y=ax2+bx+c(a≠0)的函數值y相等,連接AC、BC.
(1)求實數a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

二次函數y=ax2+bx+c,當x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數學 來源: 題型:

如果二次函數y=ax2+bx+c的圖象的頂點坐標是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖為二次函數y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當-1<x<3時,y>0.其中正確結論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•孝感)二次函數y=ax2+bx+c(a,b,c是常數,a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習冊答案