【題目】如圖,在平面直角坐標(biāo)系中,∠ACB90°OC2BO,AC6,點(diǎn)B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).

1)求點(diǎn)A的坐標(biāo);

2)求拋物線的解析式;

3)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)PPD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PEDE

①求點(diǎn)P的坐標(biāo);

②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②點(diǎn)M的坐標(biāo)為:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).

【解析】

(1)先根據(jù)已知求點(diǎn)A的坐標(biāo),利用待定系數(shù)法求二次函數(shù)的解析式;

(2)①先得AB的解析式為:y=-2x+2,根據(jù)PDx軸,設(shè)P(x,-x2-3x+4),則E(x,-2x+2),根據(jù)PE=DE,列方程可得P的坐標(biāo);

②先設(shè)點(diǎn)M的坐標(biāo),根據(jù)兩點(diǎn)距離公式可得AB,AM,BM的長(zhǎng),分三種情況:△ABM為直角三角形時(shí),分別以A、B、M為直角頂點(diǎn)時(shí),利用勾股定理列方程可得點(diǎn)M的坐標(biāo).

(1)B(1,0),

OB=1,

OC=2OB=2,

C(﹣2,0),

RtABC中,tanABC=2,

=2,

=2,

AC=6,

A(﹣2,6),

A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,

解得:

∴拋物線的解析式為:y=﹣x2﹣3x+4;

(2)①∵A(﹣2,6),B(1,0),

易得AB的解析式為:y=﹣2x+2,

設(shè)P(x,﹣x2﹣3x+4),則E(x,﹣2x+2),

PE=DE,

﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),

x=1(舍)或﹣1,

P(﹣1,6);

②∵M在直線PD上,且P(﹣1,6),

設(shè)M(﹣1,y),

AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,

BM2=(1+1)2+y2=4+y2,

AB2=(1+2)2+62=45,

分三種情況:

i)當(dāng)∠AMB=90°時(shí),有AM2+BM2=AB2,

1+(y﹣6)2+4+y2=45,

解得:y=3,

M(﹣1,3+)或(﹣1,3﹣);

ii)當(dāng)∠ABM=90°時(shí),有AB2+BM2=AM2,

45+4+y2=1+(y﹣6)2,y=﹣1,

M(﹣1,﹣1),

iii)當(dāng)∠BAM=90°時(shí),有AM2+AB2=BM2,

1+(y﹣6)2+45=4+y2,y=,

M(﹣1,);

綜上所述,點(diǎn)M的坐標(biāo)為:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示甲、乙兩名選手在一次自行車越野賽中,路程y(千米)隨時(shí)間x(分)變化的圖象.下面幾個(gè)結(jié)論:①比賽開始24分鐘時(shí),兩人第一次相遇.②這次比賽全程是10千米.③比賽開始38分鐘時(shí),兩人第二次相遇.正確的結(jié)論為_____(只填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ABBC,AD2+CD22AB2,CDAD

1)求證:ABBC

2)若AB3CD,AD17,求四邊形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)Ax軸的正半軸上,頂點(diǎn)C的坐標(biāo)為(1,).

(1)求圖象過點(diǎn)B的反比例函數(shù)的解析式;

(2)求圖象過點(diǎn)A,B的一次函數(shù)的解析式;

(3)在第一象限內(nèi),當(dāng)以上所求一次函數(shù)的圖象在所求反比例函數(shù)的圖象下方時(shí),請(qǐng)直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為打贏脫貧攻堅(jiān)戰(zhàn),某地黨委、政府聯(lián)合某企業(yè)帶領(lǐng)農(nóng)戶脫貧致富,該企業(yè)給某低收入戶發(fā)放如圖①所示的長(zhǎng)方形和正方形紙板,供其加工做成如圖②所示的A,B兩款長(zhǎng)方體包裝盒(其中A款包裝盒無蓋,B款包裝盒有蓋).請(qǐng)你幫這戶人家計(jì)算他家領(lǐng)取的360張長(zhǎng)方形紙板和140張正方形紙板,做成A,B型盒子分別多少個(gè)能使紙板剛好全部用完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于國(guó)家對(duì)農(nóng)業(yè)的大力扶持,農(nóng)民的種糧積極性得到極大提高.國(guó)家統(tǒng)計(jì)局提供的數(shù)據(jù)表明,我國(guó)糧食產(chǎn)量連續(xù)兩年大幅增長(zhǎng),年糧食產(chǎn)量為億斤,年達(dá)到了億斤,若要求這兩年糧食產(chǎn)量的平均增長(zhǎng)率,可設(shè)平均增長(zhǎng)率為,列方程為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).

(1)求點(diǎn)C到x軸的距離;

(2)分別求ABC的三邊長(zhǎng);

(3)點(diǎn)P在y軸上,當(dāng)ABP的面積為6時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在OBC中,邊BC的垂直平分線交BOC的平分線于點(diǎn)D,連接DBDC,過點(diǎn)DDFOC于點(diǎn)F.

(1)BOC60°,求BDC的度數(shù);

(2)BOC,則BDC ;(直接寫出結(jié)果)

(3)直接寫出OB,OC,OF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】六一期間,某公園游戲場(chǎng)舉行“迎奧運(yùn)”活動(dòng).有一種游戲的規(guī)則是:在一個(gè)裝有個(gè)紅球和若干個(gè)白球(每個(gè)球除顏色外其他相同)的袋中,隨機(jī)摸一個(gè)球,摸到一個(gè)紅球就得到一個(gè)奧運(yùn)福娃玩具.已知參加這種游戲活動(dòng)為人次,公園游戲場(chǎng)發(fā)放的福娃玩具為個(gè).

求參加一次這種游戲活動(dòng)得到福娃玩具的概率;

請(qǐng)你估計(jì)袋中白球接近多少個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案