【題目】如圖,在平行四邊形ABCD中,AE、BF分別平分∠DAB和∠ABC,交CD于點E、F,AE、BF相交于點M.
(1)試說明:AE⊥BF;
(2)判斷線段DF與CE的大小關系,并予以說明.
【答案】(1)證明見解析;(2)DF=CE,理由見解析.
【解析】試題分析:(1)利用平行四邊形的性質(zhì)得到AD∥BC,然后得到∠DAB+∠ABC=180°,然后根據(jù)角的平分線得出∠DAB=2∠BAE,∠ABC=2∠ABF,等量代換得出∠BAE+∠ABF=90°即可;(2)先猜想DF=CE,利用角的平分線和平行線的性質(zhì)可得DE=AD,CF=BC,然后利用線段的和差關系可得出結(jié)論.
試題解析:(1)∵在平行四邊形ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.
∵AE、BF分別平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF.
∴2∠BAE+2∠ABF=180°.
即∠BAE+∠ABF=90°.
∴∠AMB=90°.
∴AE⊥BF.
(2)DF=CE,
∵在平行四邊形ABCD中,CD∥AB,
∴∠DEA=∠EAB.
又∵AE平分∠DAB,
∴∠DAE=∠EAB.∴∠DEA=∠DAE.
∴DE=AD.
同理可得,CF=BC.
又∵在平行四邊形ABCD中,AD=BC,
∴DE=CF.
∴DE﹣EF=CF﹣EF.
即DF=CE.
科目:初中數(shù)學 來源: 題型:
【題目】拼圖是一種研究代數(shù)恒等式的重要方法,所謂的拼圖指的是把所給的圖形以不同的方式拼成不同形狀的圖形,把圖形面積用不同的代數(shù)式表示,由于拼圖前后的面積相等,從而相應的代數(shù)式的值也相等,進而得到代數(shù)恒等式.
(1)智慧學習小組探索了用4個如圖1所示的全等的長方形(長、寬分別為a、b)拼成不同的圖形.在研究過程中,他們用這4個長方形拼成了一個如圖2所示的“回形”正方形.拼圖前后,請寫出該小組所用圖形(4個長方形)的面積的計算方法:拼圖前: ;拼圖后: ;因為拼圖前后的面積不變,所以可得代數(shù)恒等式: .
(2)利用(1)中得到的恒等式,解決下面的問題:已知求xy的值.
(3)超人學習小組受智慧學習小組的啟發(fā),用4個如圖3所示的全等的直角三角形(三邊長分別為a、b、c)拼成了兩種“中空”的正方形.請你畫出這兩種圖形:
由上面的圖形可得代數(shù)恒等式: .
(4)利用(3)中得到的代數(shù)恒等式,解決下面的問題:在Rt△ABC中,已知∠ABC=90°,AB=6,BC=8,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個四位數(shù),記千位上和百位上的數(shù)字之和為x,十位上和個位上的數(shù)字之和為y,如果,那么稱這個四位數(shù)為“和平數(shù)”.例如:,因為x=y,所以是“和平數(shù)”.
(1)直接寫出:最小的“和平數(shù)”是________,最大的“和平數(shù)”是________;
(2)求個位上的數(shù)字是千位上的數(shù)字的兩倍且百位上的數(shù)字與十位上的數(shù)字之和是的倍數(shù)的所有“和平數(shù)”;
(3)將一個“和平數(shù)”的個位上與十位上的數(shù)字交換位置,同時,將百位上與千位上的數(shù)字交換位置,稱交換前后的這兩個“和平數(shù)”為一組“相關和平數(shù)”。例如:與為一組“相關和平數(shù)”求證:任意的一組“相關和平數(shù)”之和是1111的倍數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將拋物線y=x2﹣2x+1向下平移2個單位,再向左平移1個單位,所得拋物線的解析式是( 。
A. y=x2﹣2x﹣1 B. y=x2+2x﹣1 C. y=x2﹣2 D. y=x2+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種品牌運動服經(jīng)過兩次降價,每件零售價由480元降為270元,已知兩次降價的百分率相同,求每次降價的百分率.設每次降價的百分率為x,下面所列的方程中正確的是
A. 480(1+x)2=270 B. 480(1-x)2=270
C. 480(1-2x)2=270 D. 480(1-x2)=270
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,把點A(1,﹣5)向上平移3個單位后的坐標是( ).
A. (1,-2)B. (1,-8)C. (4,-5)D. (-2,-5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com