【題目】如圖,廣安市防洪指揮部發(fā)現(xiàn)渠江邊一處長400米,高8米,背水坡的坡角為45°的防洪大堤(橫截面為梯形ABCD)急需加固.經(jīng)調(diào)查論證,防洪指揮部專家組制定的加固方案是:背水坡面用土石進(jìn)行加固,并使上底加寬2米,加固后,背水坡EF的坡比i=1:2.

(1)求加固后壩底增加的寬度AF的長;

(2)求完成這項(xiàng)工程需要土石多少立方米?

【答案】(1)加固后壩底增加的寬度AF為10米;(2)完成這項(xiàng)工程需要土石19200立方米.

【解析】1)分別過E、DAB的垂線,設(shè)垂足為G、H.在Rt△EFG中,根據(jù)坡面的鉛直高度(即壩高)及坡比,即可求出FG的長,同理可在Rt△ADH中求出AH的長;由AF=FG+GH﹣AH求出AF的長。

2)已知了梯形AFED的上下底和高,易求得其面積.梯形AFED的面積乘以壩長即為所需的土石的體積。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在△ABC中,∠BAC90°,∠ABC45°ABAC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊作正方形ADEF,連接CF

(1)觀察猜想

如圖1,當(dāng)點(diǎn)D在線段BC上時(shí)可以證明△ABD≌△ACF,則

①BCCF的位置關(guān)系為: ;

②BCDC,CF之間的數(shù)量關(guān)系為: ;

(2)類比探究

如圖2,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),其他條件不變,(1),結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明;

(3)拓展延伸

如圖3,當(dāng)點(diǎn)D在線段BC的反向延長線上時(shí),且點(diǎn)AF分別在直線BC的兩側(cè),其他條件不變.

①BC,DC,CF之間的數(shù)量關(guān)系為:

若正方形ADEF的邊長為2,對(duì)角線AE,DF相交于點(diǎn)O,連接OC,則OC的長度為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AECF

(1)求證:BOE≌△DOF;

(2)若BDEF,連接DEBF,判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6厘米,點(diǎn)E在邊AB上,且AE=4厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由點(diǎn)C向點(diǎn)D運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒。

1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過2秒后,EPPQ有什么關(guān)系?請(qǐng)說明理由。

2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,則當(dāng)t為何值時(shí),能使得EPBCQP全等?此時(shí)點(diǎn)Q的運(yùn)動(dòng)速度為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】其工廠甲.乙兩個(gè)部門各有員工人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.

收集數(shù)據(jù)

從甲、乙兩個(gè)部門各隨機(jī)抽取名員工進(jìn)行了生產(chǎn)技能測(cè)試,測(cè)試成績(百分制)如下:

甲:78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙:93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述數(shù)據(jù)

1)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績?nèi)藬?shù)部門

(說明:成績分及以上為生產(chǎn)技能優(yōu)秀,分為生產(chǎn)技能良好,分為生產(chǎn)技能合格,分以下為生產(chǎn)技能不合格)

2)若按照甲部門的樣本數(shù)據(jù),在列頻數(shù)分布表時(shí),若取組距為,則這小組的頻數(shù)為    ,頻率為    ;

3)若按照乙部門的樣本數(shù)據(jù)畫出扇形統(tǒng)計(jì)圖,則表示生產(chǎn)技能優(yōu)秀部分的圓心角是    度;

得出結(jié)論:

4)估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為    ;

5)可以推斷出部門員工的生產(chǎn)技能水平較高,你的理由為    (說出一條即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用兩個(gè)全等的等邊三角形△ABC和△ACD拼成菱形ABCD.把一個(gè)含60°角的三角尺與這個(gè)菱形疊合,使三角尺的60°角的頂點(diǎn)與點(diǎn)A重合,兩邊分別與AB,AC重合.將三角尺繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn).

1)當(dāng)三角尺的兩邊分別與菱形的兩邊BCCD相交于點(diǎn)E,F時(shí),(如圖1),通過觀察或測(cè)量BE,CF的長度,你能得出什么結(jié)論并證明你的結(jié)論;

2)當(dāng)三角尺的兩邊分別與菱形的兩邊BC,CD的延長線相交于點(diǎn)E,F時(shí)(如圖2),你在(1)中得到的結(jié)論還成立嗎?簡(jiǎn)要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1),在正方形一邊上取中點(diǎn),并沿虛線剪開,用兩塊圖形拼一拼,能否拼出平行四邊形、梯形或三角形?畫圖解釋你的判斷.

2)如圖(2E為正方形ABCDBC的中點(diǎn),FDC的中點(diǎn),BFAE有何關(guān)系?請(qǐng)解釋你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,以BF為底向正方形外側(cè)作等腰直角三角形BEF,連接DF,取DF的中點(diǎn)G,連接EG,CG.

(1)如圖1,當(dāng)點(diǎn)A與點(diǎn)F重合時(shí),猜想EGCG的數(shù)量關(guān)系為   ,EGCG的位置關(guān)系為   ,請(qǐng)證明你的結(jié)論.

(2)如圖2,當(dāng)點(diǎn)FAB上(不與點(diǎn)A重合)時(shí),(1)中結(jié)論是否仍然成立?請(qǐng)說明理由;如圖3,點(diǎn)FAB的左側(cè)時(shí),(1)中的結(jié)論是否仍然成立?直接做出判斷,不必說明理由.

(3)在圖2中,若BC=4,BF=3,連接EC,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了擴(kuò)大生產(chǎn),決定購買8臺(tái)機(jī)器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機(jī)器可供選擇,其中甲型機(jī)器每日生產(chǎn)零件100個(gè),乙型機(jī)器每日生產(chǎn)零件60個(gè),經(jīng)調(diào)查,購買3臺(tái)甲型機(jī)器和2臺(tái)乙型機(jī)器共需要31萬元,購買一臺(tái)甲型機(jī)器比購買一臺(tái)乙型機(jī)器多2萬元.

(1)求甲、乙兩種機(jī)器每臺(tái)各多少萬元?

(2)如果工廠買機(jī)器的預(yù)算資金不超過46萬元,那么該工廠有哪幾種購買方案?

(3)(2)的條件下,如果要求該工廠購進(jìn)的8臺(tái)機(jī)器生產(chǎn)零件的日產(chǎn)量不低于550個(gè),那么為了節(jié)約資金,應(yīng)該選擇哪種方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案