精英家教網(wǎng)如圖,四邊形ABCD是一防洪堤壩的橫截面,AE⊥CD,BF⊥CD,且AE=BF,∠D=∠C,問(wèn)AD與BC是否相等?說(shuō)明你的理由.
解:在△ADE和△BCF中,
∠D=∠C(     )
∠AED=∠(     )(垂直的意義)
AE=BF(     )
,
[答案:括號(hào)中應(yīng)依次填上:
 
 
,
 
]
∴△ADE≌△BCF(
 

∴AD=BC(
 
分析:要證AD=BC,需證△ADE≌△BCF,現(xiàn)有條件兩角一邊對(duì)應(yīng)相等,符合AAS,答案可得.
解答:解:∵∠D=∠C(已知)
AE=BF(已知)
∠AED=∠BFC=90°
∴△ADE≌△BCF(AAS)
∴AD=BC(全等三角形的對(duì)應(yīng)邊相等).
點(diǎn)評(píng):本題考查的是全等三角形的判定與性質(zhì);判定兩個(gè)三角形全等的一般方法有:SSS、SAS、SSA、HL.題目已知比較充分,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案