如圖,菱形ABCD中,∠B=60°,AB=2,E、F分別是BC、CD的中點,連接AE、EF、AF,則△AEF的周長為________.

答案:
解析:

  答案:
  解析:第一部分:本題考查了菱形的有關性質(zhì)、勾股定理、等腰三角形、等邊三角形以及三角形全等等知識,題目不是很難,但綜合性較強.

  第二部分:連接AC.因為四邊形ABCD是菱形,所以AB=BC.又因為∠B=60°,所以△ABC是等邊三角形.因為E是BC的中點,所以AE⊥BC.同理,AF⊥CD.易證得△ABE≌△ADE,所以AE=AF.因為AB∥CD,∠B=60°,所以∠C=120°.又因為CE=CF,所以∠CEF=30°,所以∠AEF=60°,所以△AEF是等邊三角形.由勾股定理得AE=,所以△AEF的周長為3


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點,且BE=DF.
(1)求證:AE=AF;
(2)若∠B=60°,點E,F(xiàn)分別為BC和CD的中點,求證:△AEF為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD中,∠A=60°,AB=2,動點P從點B出發(fā),以每秒1個單位長度的速度沿B→C→D向終點D運動.同時動點Q從點A出發(fā),以相同的速度沿A→D→B向終點B運動,運動的時間為x秒,當點P到達點D時,點P、Q同時停止運動,設△APQ的面積為y,則反映y與x的函數(shù)關系的圖象是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,菱形ABCD中,∠BAD=60°,M是AB的中點,P是對角線AC上的一個動點,若AB長為2
3
,則PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:菱形ABCD中,E是AB的中點,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度數(shù);
(2)對角線BD的長;
(3)菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的長.
(2)求菱形的面積.

查看答案和解析>>

同步練習冊答案