【題目】如圖,∠AOB=20°,點(diǎn)M,N分別是邊OA,OB上的定點(diǎn),點(diǎn)P,Q分別是邊OB、OA上的動(dòng)點(diǎn),記∠MPQ=α,∠PQN=β,當(dāng)MP+PQ+QN最小時(shí),則β﹣α的值為_____.
【答案】40°.
【解析】
作M關(guān)于OB的對稱點(diǎn)M',N關(guān)于OA的對稱點(diǎn)N',連接M'N'交OA于Q,交OB于P,則MP+PQ+QN最小,易知∠OPM=∠OPM'=∠NPQ,∠OQP=∠AQN'=∠AQN,根據(jù)三角形的外角的性質(zhì)和平角的定義即可得到結(jié)論.
如圖,作M關(guān)于OB的對稱點(diǎn)M',N關(guān)于OA的對稱點(diǎn)N',連接M'N'交OA于Q,交OB于P,則MP+PQ+QN最小,
∴∠OPM=∠OPM'=∠NPQ,∠OQP=∠AQN'=∠AQN,
∴∠QPN(180°﹣α)=∠AOB+∠MQP=20°(180°﹣β),
∴180°﹣α=40°+(180°﹣β),
∴β﹣α=40°.
故答案為:40°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,AB=BC,E、M分別為AB、AC上的點(diǎn),連接CE,BM交于點(diǎn)G,且BM⊥CE,O為AC的中點(diǎn),連接BO交CE于點(diǎn)N.
(1)如圖①,若AB=6,2MO=AM,求BM的長;
(2)如圖②,連接OG、AG,若AG⊥OG,求證:AC=BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科技改變世界.2017年底,快遞分揀機(jī)器人從微博火到了朋友圈,據(jù)介紹,這些機(jī)器人不僅可以自動(dòng)規(guī)劃最優(yōu)路線,將包裹準(zhǔn)確地放入相應(yīng)的格口,還會感應(yīng)避讓障礙物,自動(dòng)歸隊(duì)取包裹.沒電的時(shí)候還會自己找充電樁充電.某快遞公司啟用80臺A種機(jī)器人、300臺B種機(jī)器人分揀快遞包裹.A,B兩種機(jī)器人全部投入工作,1小時(shí)共可以分揀1.44萬件包裹,若全部A種機(jī)器人工作3小時(shí),全部B種機(jī)器人工作2小時(shí),一共可以分揀3.12萬件包裹.
(1)求兩種機(jī)器人每臺每小時(shí)各分揀多少件包裹;
(2)為了進(jìn)一步提高效率,快遞公司計(jì)劃再購進(jìn)A,B兩種機(jī)器人共200臺,若要保證新購進(jìn)的這批機(jī)器人每小時(shí)的總分揀量不少于7000件,求最多應(yīng)購進(jìn)A種機(jī)器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣5,0),B(5,0),D(2,7),連接AD交y軸于C點(diǎn).
(1)求C點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿BA方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)也以每秒1個(gè)單位的速度沿y軸正半軸方向運(yùn)動(dòng)(當(dāng)P點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),兩點(diǎn)都停止運(yùn)動(dòng)).設(shè)從出發(fā)起運(yùn)動(dòng)了x秒.
①請用含x的代數(shù)式分別表示P,Q兩點(diǎn)的坐標(biāo);
②當(dāng)x=2時(shí),y軸上是否存在一點(diǎn)E,使得△AQE的面積與△APQ的面積相等?若存在,求E的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PB是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,進(jìn)而求出等邊△ABC的邊長為,問題得到解決.
請你參考李明同學(xué)的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場,為了吸引顧客,在“白色情人節(jié)”當(dāng)天舉辦了商品有獎(jiǎng)酬賓活動(dòng),凡購物滿200元者,有兩種獎(jiǎng)勵(lì)方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎(jiǎng)的機(jī)會.已知在搖獎(jiǎng)機(jī)內(nèi)裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,搖獎(jiǎng)?wù)弑仨殢膿u獎(jiǎng)機(jī)內(nèi)一次連續(xù)搖出兩個(gè)球,根據(jù)球的顏色(如表)決定送禮金券的多少.
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 18 | 24 | 18 |
(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.
(2)如果一名顧客當(dāng)天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實(shí)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A、D在y軸正半軸上,點(diǎn)B、C分別在x軸上,CD平分∠ACB,與y軸交于D點(diǎn),∠CAO=90°-∠BDO.
(1)求證:AC=BC:
(2)如圖2,點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)E為AC上一點(diǎn),且∠DEA=∠DBO,求BC+EC的長;
(3)如圖3,過D作DF⊥AC于F點(diǎn),點(diǎn)H為FC上一動(dòng)點(diǎn),點(diǎn)G為OC上一動(dòng)點(diǎn),當(dāng)H在FC上移動(dòng)、點(diǎn)G在OC上移動(dòng)時(shí),始終滿足∠GDH=∠GDO+∠FDH,試判斷FH、GH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.
(圖3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點(diǎn),且滿足BE=BC.連接CE并延長交AD于點(diǎn)F,連接AE,過B點(diǎn)作BG⊥AE于點(diǎn)G,延長BG交AD于點(diǎn)H.在下列結(jié)論中:
①AH=DF; ②∠AEF=45°; ③S四邊形EFHG=S△DEF+S△AGH,
其中正確的結(jié)論有_____________________.(填正確的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化工材料經(jīng)銷公司購進(jìn)一種化工原料若干千克,價(jià)格為每千克30元。物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元。經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100。在銷售過程中,每天還要支付其他費(fèi)用450元。
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。
(2)求該公司銷售該原料日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式。
(3)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com