【題目】(10分)如圖,已知⊙O上依次有A、B、C、D四個點(diǎn),=,連接AB、AD、BD,弦AB不經(jīng)過圓心O,延長ABE,使BE=AB,連接EC,FEC的中點(diǎn),連接BF

1)求證:BF=BD;

2)設(shè)GBD的中點(diǎn),探索:在⊙O上是否存在點(diǎn)P(不同于點(diǎn)B),使得PG=PF?并說明PBAE的位置關(guān)系.

【答案】(1)證明見解析;(2)存在,作圖略;PG=PF

【解析】試題分析:(1)利用三角形中位線定理得出BF=AC,再利用圓心角定理得出=,進(jìn)而得出BF=BD;

2)首先過點(diǎn)BAE的垂線,與⊙O的交點(diǎn)即為所求的點(diǎn)P,得出BP⊥AE,進(jìn)而證明△PBG≌△PBFSAS),求出PG=PF

試題解析:(10分)

1)證明:連接AC,

∵AB=BE,點(diǎn)BAE的中點(diǎn),

∵FEC的中點(diǎn),∴BF△EAC的中位線,∴BF=AC,

=,+=+=,∴BD=AC,∴BF=BD;

2)解:過點(diǎn)BAE的垂線,與⊙O的交點(diǎn)即為所求的點(diǎn)P

∵BF△EAC的中位線,∴BF∥AC∴∠FBE=∠CAE,

=,∴∠CAB=∠DBA,

由作法可知BP⊥AE,∴∠GBP=∠FBP,

∵GBD的中點(diǎn),∴BG=BD,∴BG=BF,

△PBG△PBF中,

,

∴△PBG≌△PBFSAS),∴PG=PF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為( )

A. 2 B. 8 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABCAB=BC=8cmABC=90°,點(diǎn)E以每秒1cm/s的速度由A向點(diǎn)B運(yùn)動EDAC于點(diǎn)D,點(diǎn)MEC的中點(diǎn)

1)求證BMD為等腰直角三角形;

2)當(dāng)點(diǎn)E運(yùn)動多少秒時,BMD的面積為12.5cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若多項(xiàng)式a2+ka+1是一個完全平方式,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館擁有客房100間,經(jīng)營中發(fā)現(xiàn):每天入住的客房數(shù)y()與房價x()(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對應(yīng)值如下表:

x()

180

260

280

300

y()

100

60

50

40

(1)yx之間的函數(shù)表達(dá)式;

(2)已知每間入住的客房,賓館每日需支出各種費(fèi)用100元;每間空置的客房,賓館每日需支出各種費(fèi)用60元.當(dāng)房價為多少元時,賓館當(dāng)日利潤最大?求出最大利潤.(賓館當(dāng)日利潤=當(dāng)日房費(fèi)收入-當(dāng)日支出)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠C=∠D,OD=OC.求證:DE=CE

【答案】證明見解析

【解析】試題分析:利用ASA證明△OBC≌△OAD,根據(jù)全等三角形的對應(yīng)邊相等可得OA=OB,再由OD=OC即可得AC=BD,根據(jù)AAS證明△ACE≌△BDE,再由全等三角形的對應(yīng)邊相等即可得結(jié)論.

試題解析:

在△OBC和△OAD中,

,

∴△OBC≌△OADASA),

OA=OB

OD=OC,

OD﹣OB=OC﹣OA,即AC=BD,

在△ACE和△BDE中,

∴△ACE≌△BDEAAS),

DE=CE

型】解答
結(jié)束】
27

【題目】如圖,以等腰直角三角形ABC的斜邊AB為邊向內(nèi)作等邊△ABD,連接DC,以DC為邊,作等邊△DCE,點(diǎn)B、ECD的同側(cè).

1)求∠BCE的大。

2)求證:BE=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(
A.兩個數(shù)的差一定小于被減數(shù)
B.若兩數(shù)的差為0,則這兩數(shù)必相等
C.兩個相反數(shù)相減必為0
D.若兩數(shù)的差為正數(shù),則此兩數(shù)都是正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的直徑,點(diǎn)上一點(diǎn),若∠BAC=∠CAM,過點(diǎn)作直線垂直于射線AM,垂足為點(diǎn)D.

(1)試判斷的位置關(guān)系,并說明理由;

(2)若直線的延長線相交于點(diǎn) 的半徑為3,并且.求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四包真空小包裝火腿,每包以標(biāo)準(zhǔn)克數(shù)(450克)為基準(zhǔn),超過的克數(shù)記作正數(shù),不足的克數(shù)記作負(fù)數(shù),以下數(shù)據(jù)是記錄結(jié)果,其中表示實(shí)際克數(shù)最接近標(biāo)準(zhǔn)克數(shù)的是( )
A.+2
B.-3
C.+3
D.+4

查看答案和解析>>

同步練習(xí)冊答案