【題目】根據(jù)下列要求,解答相關問題.
(1)請補全以下求不等式﹣2x2﹣4x≥0的解集的過程
①構造函數(shù),畫出圖象:根據(jù)不等式特征構造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標系中(圖1)畫出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫出圖象即可).
②求得界點,標示所需,當y=0時,求得方程﹣2x2﹣4x=0的解為______;并用鋸齒線標示出函數(shù)y=﹣2x2﹣4x圖象中y>0的部分.
③借助圖象,寫出解集:由所標示圖象,可得不等式﹣2x2﹣4x>0的解集為_______.
(2)利用(1)中求不等式解集的步驟,求不等式x2﹣2x+1≥4的解集.
①構造界點,畫出圖象;
②求得界點,標志所需;
③借助圖象,寫出解集
【答案】x1=0,x2=﹣2﹣2<x<0
【解析】
(1)①利用描點法即可作出函數(shù)的圖象;
②當時,解方程求得x的值;
③當y>0時,就是函數(shù)圖象在x軸上方的部分,據(jù)此即可解得;
(2)首先畫出的函數(shù)圖象,再利用當y=4時,方程的解,得出不等式的解集.
(1)①如圖1所示:
②方程的解為:
故答案為
③不等式的解集為:
故答案為:
(2)①如圖2所示:
構造函數(shù) 拋物線的對稱軸x=1,
且開口向上,頂點坐標(1,0),
關于對稱軸x=1對稱的一對點(0,1),(2,1),
用三點法畫出圖象如圖2所示:
②當y=4時,方程 的解為:
③由圖2知,不等式的解集是:或
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),C(0,3)兩點,它的對稱軸與x軸交于點F,過點C作CE∥x軸交拋物線于另一點E,連結EF,AC.
(1)求該拋物線的表達式及點E的坐標;
(2)在線段EF上任取點P,連結OP,作點F關于直線OP的對稱點G,連結EG和PG,當點G恰好落到y(tǒng)軸上時,求△EGP的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸,y軸上,連OB,將紙片OABC沿OB折疊,使點A落在A′的位置,若OB=,tan∠BOC=,則點A′的坐標( 。
A. (,) B. (﹣,) C. (﹣,) D. (﹣,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著信息技術的快速發(fā)展,“互聯(lián)網(wǎng)+”滲透到我們日常生活的各個領域,網(wǎng)上在線學習交流已不再是夢,現(xiàn)有某教學網(wǎng)站策劃了A,B兩種上網(wǎng)學習的月收費方式:
收費方式 | 月使用費/元 | 包時上網(wǎng)時間/h | 超時費/(元/min) |
A | 7 | 25 | 0.01 |
B | m | n | 0.01 |
設每月上網(wǎng)學習時間為x小時,方案A,B的收費金額分別為yA,yB.
(1)如圖是yB與x之間函數(shù)關系的圖象,請根據(jù)圖象填空:m= ;n=
(2)寫出yA與x之間的函數(shù)關系式.
(3)選擇哪種方式上網(wǎng)學習合算,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=3,BC=4,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB’D,AB'與邊BC交于點E.若△DEB’為直角三角形,則BD的長是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知中,,,點為的中點,如果點在線段上以的速度由點向點運動,同時,點在線段上由點向點以的速度運動.經(jīng)過( )秒后,與全等.
A.2B.3C.2或3D.無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABC中,∠B=90°
(1)根據(jù)要求作圖(尺規(guī)作圖,保留作圖痕跡,不寫畫法)
①作∠BAC的平分線AD交BC于D;
②作線段AD的垂直平分線交AB于E,交AC于F,垂足為H;
③連接ED.
(2)在(1)的基礎上寫出一對相似比不為1的相似三角形和一對全等三角形:
_________________________;__________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=mx+n與反比例函數(shù)y=其中m、n為常數(shù),且mn<0,則它們在同一坐標系中的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點D,交AB于點E.
(1)若∠A=40°,求∠DBC的度數(shù);
(2)若AE=6,△CBD的周長為20,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com