如圖,等腰直角△ABC中,∠ABC=90°,點P在AC上,將△ABP繞頂點B沿順時針方向旋轉(zhuǎn)90°后得到△CBQ.
(1)求∠PCQ的度數(shù);
(2)當AB=4,AP:PC=1:3時,求PQ的大小;
(3)當點P在線段AC上運動時(P不與A、C重合),請寫出一個反映PA2,PC2,PB2之間關(guān)系的等式,并加以證明.
(1)由題意知,△ABP≌△CQB,
∴∠A=∠ACB=∠BCQ=45°,∠ABP=∠CPQ,AP=CQ,PB=BQ,
∴∠PCQ=∠ACB+∠BCQ=90°,∠ABP+∠PBC=∠CPQ+∠PBC=90°,
∴△BPQ是等腰直角三角形,△PCQ是直角三角形.

(2)當AB=4,AP:PC=1:3時,有AC=4
2
,AP=
2
,PC=3
2
,
∴PQ=
PC2+CQ2
=2
5


(3)存在2PB2=PA2+PC2,
由于△BPQ是等腰直角三角形,
∴PQ=
2
PB,
∵AP=CQ,
∴PQ2=PC2+CQ2=PA2+PC2
故有2PB2=PA2+PC2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC各頂點的坐標分別為A(4,4),B(-2,2),C(3,0),
(1)畫出它的以原點O為對稱中心的△A′B′C′;
(2)寫出A′,B′,C′三點的坐標;
(3)把每個小正方形的邊長看作1,求△ABC的周長(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形網(wǎng)格上有一個△ABC.
(1)作出△ABC關(guān)于點O的中心對稱圖形△A′B′C′(不寫作法,但要標出字母);
(2)若網(wǎng)格上的最小正方形邊長為1,求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等腰△ABC中,AB=BC=5cm,AC=3cm,將△ABC繞點A按順時針旋轉(zhuǎn)至△AB′C′,使點C′恰好落在邊BC上.則BC′的長是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠A=90°,AB=6cm,AC=8cm,以斜邊BC上距離B點6cm的點P為中心,把這個三角形按逆時針方向旋轉(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個三角形重疊部分的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點A的坐標為(-3,2),點B的坐標為(-1,3),將△ABO繞點O順時針旋轉(zhuǎn)90°得到△A′B′O.
(1)請你在圖中畫出△A′B′O;
(2)寫出點A′、B′的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,菱形ABCD的對角線交于平面直角坐標系的原點,頂點A坐標為(-2,3),現(xiàn)將菱形繞點O順時針方向旋轉(zhuǎn)180°后,A點坐標變?yōu)開_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等腰直角△ABC的頂點A、B、C在正方形(每個小正方形邊長為單位1)網(wǎng)格的格點上,∠BAC=90°,AB=AC(計算結(jié)果保留π)
(1)畫出△ABC繞點A順時針旋轉(zhuǎn)90°的△AB1C1
(2)旋轉(zhuǎn)過程中線段BC的中點經(jīng)過的路徑長為______.
(3)求出旋轉(zhuǎn)過程中線段BC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知點A的坐標為(a,b),O為坐標原點,連接OA,將線段OA繞點O按逆時針方向旋轉(zhuǎn)90°得OA1,則點A1的坐標為______.

查看答案和解析>>

同步練習(xí)冊答案