【題目】如圖所示,點C是線段AB上的一點,點D是線段AB的中點,點E是線段BC的中點.

(1)當AC=10,BC=8時,求線段DE的長度;

(2)當AC=m,BC=n(m>n)時,求線段DE的長度;

(3)從(1)(2)的結果中,你發(fā)現(xiàn)了什么規(guī)律?請直接寫出來.

【答案】(1)4;(2).(3)DE的長等于AC的長.

【解析】

(1)先求出AC長,再根據(jù)線段的中點求出ADBE長,即可求出答案;

(2)先求出AC長,再根據(jù)線段的中點求出ADBE長,即可求出答案;

(3)根據(jù)(1)和(2)中的結果得出即可.

解:(1)AC=8,BC=6,

AB=14,

∵點D是線段AB的中點,

BC=6,點E是線段BC的中點.

DE=14﹣7﹣3=4;

(2)AC=m,BC=n,

AB=m+n.

∵點D是線段AB的中點,

BC=n,點E是線段BC的中點.

(3)規(guī)律:DE的長等于AC的長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=60°,E,F(xiàn)分別是AB,AD的中點,DE,BF相交于點G,連接BD,CG,有下列結論:①∠BGD=120° ;②BG+DG=CG;③△BDF≌△CGB;④.其中正確的結論有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】結算下列各題
(1)計算:| ﹣2|+( 1﹣(π﹣3.14)0 ;
(2)計算:[xy(3x﹣2)﹣y(x2﹣2x)]÷x2y.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD與正方形EFGH邊長相等,下列說法:

①這個圖案可以看成正方形ABCD繞點O旋轉45°前后的圖形共同組成的;

②這個圖案可以看成△ABC繞點O分別旋轉45°,90°,135°,180°,225°前后的圖形共同組成的;

③這個圖案可以看成△BOC繞點O分別旋轉45°,90°,135°,225°,250°前后的圖形共同組成的.

其中正確的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內有一點D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,則∠BDC的度數(shù)為( )

A. 100° B. 80° C. 70° D. 50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A1、A2、A3、…、An(n為正整數(shù))都在數(shù)軸上.點A2在點A1的左邊,且A1A2=1;點A3在點A2的右邊,且A2A3=2;點A4在點A3的左邊,且A3A4=3;…,點A2018在點A2017的左邊,且A2017A2018=2017,若點A2018所表示的數(shù)2018,則點A1所表示的數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB分別交y軸、x軸于A、B兩點,OA=2,tan∠ABO= ,拋物線y=﹣x2+bx+c過A、B兩點.

(1)求直線AB和這個拋物線的解析式;
(2)設拋物線的頂點為D,求△ABD的面積;
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t取何值時,MN的長度l有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一種新運算”:ab=2a﹣ab,比如1(﹣3)=2×1﹣1×(﹣3)=5

(1)求(﹣2)3的值;

(2)若(﹣3)x=(x+1)5,求x的值;

(3)若x1=2(1y),求代數(shù)式x+y+1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DE是過點A的直線,BDDE于D,CEDE于點E;

(1)若B、C在DE的同側(如圖所示)且AD=CE.求證:ABAC;

(2)若B、C在DE的兩側(如圖所示),其他條件不變,AB與AC仍垂直嗎?若是請給出證明;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案