【題目】已知,如圖,PABC中線AD上一點,APPD=21,延長BP、CP分別交ACAB于點E、FEFAD于點Q.(1PQ=EQ;(2FPPC=ECAE;(3FQBD=PQPD;(4SFPQSDCP=SPEFSPBC上述結(jié)論中,正確的有_________

【答案】3)(4

【解析】解:延長PDM,使DM=PD,連接BM、CM,AD是中線,BD=CD,

四邊形BPCM是平行四邊形,BPMCCPBM,即PEMCPFBM,

AEAC=APAM,AFAB=APAM,AFAB=AEAC,

EFBCAFQABD,AEQACDFQBD=EQCD,

FQ=EQ,而PQEQ不一定相等,故(1)錯誤;

△△PEFPBC,AEFACBPFPC=EFBC,EFBC=AEAC,

PFPC=AEAC,故(2)錯誤;PFQPCDFQCD=PQPD,

FQBD=PQPD;故(3)正確;EFBC,SFPQSDCP=2,SPEFSPBC=2SFPQSDCP=SPEFSPBC.故(4)正確.

故答案為:(3)(4).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

18000

第二周

4

10

31000

(1)求A,B兩種型號的凈水器的銷售單價;

(2)若電器公司準備用不多于54000元的金額在采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?

(3)在(2)的條件下,公司銷售完這30臺凈水器能否實現(xiàn)利潤為12800元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某周日上午8:00小宇從家出發(fā),乘車1小時到達某活動中心參加實踐活動.11:00時他在活動中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/小時的平均速度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設(shè)小宇離家x(小時)后,到達離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.

(1)活動中心與小宇家相距 千米,小宇在活動中心活動時間為 小時,他從活動中心返家時,步行用了 小時;

(2)求線段BC所表示的y(千米)與x(小時)之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);

(3)根據(jù)上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司招聘職員,對甲、乙兩位候選人進行了面試和筆試,面試中包括形體和口才,筆試中包括專業(yè)水平和創(chuàng)新能力考察,他們的成績(百分制)如下表:

候選人

面試

筆試

形體

口才

專業(yè)水平

創(chuàng)新能力

86

90

96

92

92

88

95

93

若公司根據(jù)經(jīng)營性質(zhì)和崗位要求認為:形體、口才、專業(yè)水平、創(chuàng)新能力按照4655的比確定,請計算甲、乙兩人各自的平均成績,看看誰將被錄?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=6,EBC邊的中點,點P在線段AD上,過PPFAEF,設(shè)PA=x

1)求證:PFA∽△ABE;

2)當點P在線段AD上運動時,設(shè)PA=x,是否存在實數(shù)x,使得以點P,F,E為頂點的三角形也與ABE相似?若存在,請求出x的值;若不存在,請說明理由;

3)探究:當以D為圓心,DP為半徑的⊙D線段AE只有一個公共點時,請直接寫出x滿足的條件:   

備用圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)的圖象如圖所示,則下列結(jié)論①k<0;a>0;③不等式x+a<kx+b的解集是x<3;ab=3k3,正確的個數(shù)是()

A. 3B. 2C. 1D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把四張大小相同的長方形卡片(如圖)按圖、圖兩種放法放在一個底面為長方形(長為,寬為)的盒底上,底面未被卡片覆蓋的部分用陰影表示,若記圖中陰影部分的周長為,圖中陰影部分的周長為,則___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在平面直角坐標系xOy中,點A(-4,0),點B在直線y=x+2A、B兩點間的距離最小時,點B的坐標是(

A. (,) B. (,) C. (-3,-1) D. (-3,)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的頂點在坐標軸上,點的坐標是(2,2).將ABC沿軸向左平移得到A1B1C1,落在函數(shù)y=-.如果此時四邊形的面積等于,那么點的坐標是________

查看答案和解析>>

同步練習冊答案