【題目】中,,CDAB邊上的高,若.

1)求CD的長(zhǎng).

2)動(dòng)點(diǎn)P在邊AB上從點(diǎn)A出發(fā)向點(diǎn)B運(yùn)動(dòng),速度為1個(gè)單位/秒;動(dòng)點(diǎn)Q在邊AC上從點(diǎn)A出發(fā)向點(diǎn)C運(yùn)動(dòng),速度為v個(gè)單位秒,設(shè)運(yùn)動(dòng)的時(shí)間為,當(dāng)點(diǎn)Q到點(diǎn)C時(shí),兩個(gè)點(diǎn)都停止運(yùn)動(dòng).

①若當(dāng)時(shí),,求t的值.

②若在運(yùn)動(dòng)過(guò)程中存在某一時(shí)刻,使成立,求v關(guān)于t的函數(shù)表達(dá)式,并寫(xiě)出自變量t的取值范圍.

【答案】1CD=8;(2t=4;(3()

【解析】

1)作AEBCE,根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)可得BE=BC,然后利用勾股定理求出AE,再用等面積法可求出CD的長(zhǎng);

2過(guò)BBFACF,易得BF=CD,分別討論Q點(diǎn)在AFFC之間時(shí),根據(jù)△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;

3)同(2)建立等式關(guān)系即可得出關(guān)系式,再根據(jù)QFC之間求出t的取值范圍即可.

解:(1)如圖,作AEBCE,

AB=AC

BE=BC=

RtABE中,

∵△ABC的面積=

2)過(guò)BBQAC,當(dāng)QAF之間時(shí),如圖所示,

∵△ABC的面積=,AB=AC

BF=CD

RtCPDRtBQF

CP=BQCD=BF,

RtCPDRtBQFHL

PD=QF

RtACD中,CD=8AC=AB=10

同理可得AF=6

PD=AD=AP=6-t,QF=AF-AQ=6-2t

PD=QF6-t=6-2t,解得t=0,

t0,

∴此種情況不符合題意,舍去;

當(dāng)Q點(diǎn)在FC之間時(shí),如圖所示,

此時(shí)PD=6-tQF=2t-6

PD=QF6-t=2t-6,

解得t=4,

綜上得t的值為4.

3)同(2)可知v1時(shí),QAF之間不存在CP=BQ,QFC之間存在CP=BQQF點(diǎn)時(shí),顯然CPBQ,

∵運(yùn)動(dòng)時(shí)間為t,則AP=tAQ=vt,

PD=6-t,QF=vt-6,

PD=QF6-t=vt-6,

整理得,

QFC之間,即AFAQAC

,代入

,解得

所以答案為()

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若兩個(gè)圖形成中心對(duì)稱(chēng),則下列說(shuō)法:

對(duì)應(yīng)點(diǎn)的連線(xiàn)一定經(jīng)過(guò)對(duì)稱(chēng)中心;

這兩個(gè)圖形的形狀和大小完全相同;

這兩個(gè)圖形的對(duì)應(yīng)線(xiàn)段一定互相平行;

將一個(gè)圖形圍繞對(duì)稱(chēng)中心旋轉(zhuǎn)后必與另一個(gè)圖形重合.其中正確的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,BC=10,ACAB=4,AD是∠BAC的角平分線(xiàn),CDAD,則SBDC的最大值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,頂角為36°的等腰三角形,其底邊與腰之比等,這樣的三角形稱(chēng)為黃金三角形,已知腰AB=1,△ABC為第一個(gè)黃金三角形,△BCD為第二個(gè)黃金三角形,△CDE為第三個(gè)黃金三角形,以此類(lèi)推,第2014個(gè)黃金三角形的周長(zhǎng)( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)圓錐的高為cm,側(cè)面展開(kāi)圖是半圓.

求:(1)圓錐的母線(xiàn)長(zhǎng)與底面半徑之比;

2)求∠BAC的度數(shù);

3)圓錐的側(cè)面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,點(diǎn)D、E、F分別在AB、BCAC邊上,且BECF,BDCE

1)求證:DEF是等腰三角形;

2)當(dāng)∠A45°時(shí),求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,輪船沿正南方向以30海里/時(shí)的速度勻速航行,M處觀(guān)測(cè)到燈塔P在南偏西22°方向上航行2小時(shí)后到達(dá)N,觀(guān)測(cè)燈塔P在南偏西44°方向上,若該船繼續(xù)向南航行至離燈塔最近的位置,則此時(shí)輪船離燈塔的距離約為(參考數(shù)據(jù):sin68°0.9272,sin46°0.7193,sin22°0.3746,sin44°0.6947)(  )

A. 22.48海里 B. 41.68海里

C. 43.16海里 D. 55.63海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,CFACAB的延長(zhǎng)線(xiàn)于點(diǎn)F,GBC的中點(diǎn),射線(xiàn)AGCFD,ECF上,CEAD,連接BD,BE.求證:BDE是等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)M在第二象限,且經(jīng)過(guò)點(diǎn) A(1,0)和點(diǎn) B(0,2).則

(1)a 的取值范圍是________;

(2)△AMO的面積為△ABO面積的倍時(shí),則a的值為________

查看答案和解析>>

同步練習(xí)冊(cè)答案