【題目】我校準備實行學案式教學,需印刷若干份數(shù)學學案,印刷廠有甲、乙兩種收費方式,除按印數(shù)收取印刷費外,甲種方式還需收取制版費而乙種不需要.兩種印刷方式的費用(元)與印刷份數(shù)(份)之間的關(guān)系如圖所式.
(1)求出甲、乙兩種收費方式的函數(shù)關(guān)系式;
(2)我校八年級每次需印刷100-450(含100和450)份學案,選擇哪種印刷方式較合算.
【答案】(1)甲收費方式的函數(shù)關(guān)系式為:y1=0.1x+6(x≥0);乙收費方式的函數(shù)關(guān)系式為y2=0.12x(x≥0)(2)印制100~300(含100)份學案,選擇乙種印刷方式較合算,印制300份學案,甲、乙兩種印刷方式都一樣合算,印制300~450(含450)份學案,選擇甲種印刷方式較合算.
【解析】
(1)設(shè)甲種收費的函數(shù)關(guān)系式y1=k1x+b,乙種收費的函數(shù)關(guān)系式是y2=k2x,直接運用待定系數(shù)法就可以求出結(jié)論;
(2)由(1)的解析式分三種情況進行討論,當y1>y2時,當y1=y2時,當y1<y2時分別求出x的取值范圍就可以得出選擇方式.
(1)設(shè)甲種收費的函數(shù)關(guān)系式y1=k1x+b,乙種收費的函數(shù)關(guān)系式是y2=k2x,由題意,得,12=100k2,
解得:,k2=0.12,
∴y1=0.1x+6(x≥0),y2=0.12x(x≥0);
∴甲收費方式的函數(shù)關(guān)系式為:y1=0.1x+6(x≥0);乙收費方式的函數(shù)關(guān)系式為y2=0.12x(x≥0);
(2)由題意,得
當y1>y2時,0.1x+6>0.12x,得x<300;
當y1=y2時,0.1x+6=0.12x,得x=300;
當y1<y2時,0.1x+6<0.12x,得x>300;
∴當100≤x<300時,選擇乙種方式合算;
當x=300時,甲、乙兩種方式一樣合算;
當300<x≤450時,選擇甲種方式合算.
答:印制100~300(含100)份學案,選擇乙種印刷方式較合算,印制300份學案,甲、乙兩種印刷方式都一樣合算,印制300~450(含450)份學案,選擇甲種印刷方式較合算.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每一個小正方形邊長都是1,每個小格的頂點叫作格點,以格點為頂點分別按下列要求畫圖.
(1)畫出一個周長為24,面積為24的直角三角形;
(2)畫出一個周長為20,面積為24的菱形;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點C(3,0),且與兩坐標軸圍成的三角形的面積為3.
(1)求該一次函數(shù)的解析式;
(2)若反比例函數(shù)y=的圖象與該一次函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點,且AC=2BC,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象分別與軸交于兩點,正比例函數(shù)的圖象與交于點
(1)求的值及的解析式;
(2)求的值;
(3)一次函數(shù)的圖象為且不能圍成三角形,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售.某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2 , 從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元.已知該樓盤每套樓房面積均為120米2 , 若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價8%,另外每套樓房贈送a元裝修基金;
方案二:降價l0%,沒有其他贈送.
(1)請寫出售價y(元/米2)與樓層x( ,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學六七年級有350名同學去春游,已知2輛A型車和1輛B型車可以載學生100人;1輛A型車和2輛B型車可以載學生110人.
(1)A、B型車每輛可分別載學生多少人?
(2)若租一輛A需要100元,一輛B需120元,請你設(shè)計租車方案,使得恰好運送完學生并且租車費用最少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在梯形中,,點在直線上,聯(lián)結(jié),過點作的垂線,交直線與點,
(1)如圖1,已知,:求證:;
(2)已知:,
① 當點在線段上,求證:;
② 當點在射線上,①中的結(jié)論是否成立?如果成立,請寫出證明過程;如果不成立,簡述理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了改善辦學條件,計劃購置一電子白板和一批筆記本電腦,經(jīng)投標,購買一塊電子白板比買三臺筆記本電腦多3000元,購買4塊電子白板和5臺筆記本電腦共需80000元.
(1)求購買一塊電子白板和一臺筆記本電腦各需多少元?
(2)根據(jù)該校實際情況需購買電子白板和筆記本電腦的總數(shù)為396臺,要求購買的總費用不超過2700000元,并購買筆記本電腦的臺數(shù)不超過購買電子白板數(shù)量的3倍,該校有哪幾種購買方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com