(2007•深圳)如圖,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一點,∠BAE=∠MCE,∠MBE=45°.
(1)求證:BE=ME;
(2)若AB=7,求MC的長.

【答案】分析:由已知可得∠MBE=∠BME=45°,即BE=ME,根據(jù)AAS判定△AEB≌△CEM,全等三角形的對應(yīng)邊相等,則MC=AB=7.
解答:(1)證明:∵AD∥BC,EA⊥AD,
∴∠DAE=∠AEB=90°.(2分)
∵∠MBE=45°,∴∠BME=45°.
∴BE=ME.(2分)

(2)解:∵∠AEB=∠AEC=90°,∠1=∠2,
又∵BE=ME,
∴△AEB≌△CEM,(3分)
∴MC=BA=7.(1分)
點評:此題主要考查了梯形的性質(zhì)及全等三角形的判定方法的理解及運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•深圳)如圖,在平面直角坐標(biāo)系中,正方形AOCB的邊長為1,點D在x軸的正半軸上,且OD=OB,BD交OC于點E.
(1)求∠BEC的度數(shù);
(2)求點E的坐標(biāo);
(3)求過B,O,D三點的拋物線的解析式.(計算結(jié)果要求分母有理化.參考資料:把分母中的根號化去,叫分母有理化.例如:
;
;
等運算都是分母有理化)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•深圳)如圖,在平面直角坐標(biāo)系中,正方形AOCB的邊長為1,點D在x軸的正半軸上,且OD=OB,BD交OC于點E.
(1)求∠BEC的度數(shù);
(2)求點E的坐標(biāo);
(3)求過B,O,D三點的拋物線的解析式.(計算結(jié)果要求分母有理化.參考資料:把分母中的根號化去,叫分母有理化.例如:
;
;
等運算都是分母有理化)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(14)(解析版) 題型:解答題

(2007•深圳)如圖,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一點,∠BAE=∠MCE,∠MBE=45°.
(1)求證:BE=ME;
(2)若AB=7,求MC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•深圳)如圖1,在平面直角坐標(biāo)系中,拋物線與直線相交于A,B兩點.
(1)求線段AB的長;
(2)若一個扇形的周長等于(1)中線段AB的長,當(dāng)扇形的半徑取何值時,扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點,垂足為點M,分別求出OM,OC,OD的長,并驗證等式是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說明:

查看答案和解析>>

同步練習(xí)冊答案