【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,以OB為直徑畫圓M,過(guò)D作⊙M的切線,切點(diǎn)為N,分別交AC、BC于點(diǎn)E、F,已知AE=5,CE=3,則菱形ABCD的面積是( )
A. 24B. 20C. D.
【答案】D
【解析】
連接MN,根據(jù)題意可得OE=1,因?yàn)?/span>DN為⊙M的切線,所以EN=EO=1,易證△DEO∽△DMN,且MN=DM,則DE=3OE=3,在Rt△DMN中,利用勾股定理即可求得MN的長(zhǎng),即可得BD的長(zhǎng),再利用菱形的面積公式求解即可.
解:如圖,連接MN,
∵AE=5,CE=3,DN為⊙M的切線,
∴OE=EN=1,
易證△DEO∽△DMN,且MN=DM,
則DE=3OE=3,
在Rt△DMN中,MN2+DN2=DM2,即MN2+16=9 MN2,
解得MN=,則BD=4MN=4,
則菱形ABCD的面積=BD·AC=.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線過(guò)點(diǎn),頂點(diǎn)為M點(diǎn).
(1)求該拋物線的解析式;
(2)試判斷拋物線上是否存在一點(diǎn)P,使∠POM=90.若不存在,說(shuō)明理由;若存在,求出P點(diǎn)的坐標(biāo);
(3)試判斷拋物線上是否存在一點(diǎn)K,使∠OMK=90,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為< x >,即已知n為正整數(shù),如果n-≤x<n+,那么< x >=n.例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…則滿足方程< x >=的非負(fù)實(shí)數(shù)x的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),拋物線y=+bx+c經(jīng)過(guò)A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn),該拋物線的對(duì)稱軸與x軸交于點(diǎn)E.
(1)直接寫出拋物線的解析式為 ;
(2)以點(diǎn)E為圓心的⊙E與直線AB相切,求⊙E的半徑;
(3)連接BC,點(diǎn)P是第三象限內(nèi)拋物線上的動(dòng)點(diǎn),連接PE交線段BC于點(diǎn)D,當(dāng)△CED為直角三角形時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC>AB,在BC邊上取點(diǎn)D,使AB=BD,構(gòu)造正方形ABDE,DE交AC于點(diǎn)F,作EG⊥AC交AC于點(diǎn)G,交BC于點(diǎn)H.
(1)求證:△AEF≌△EDH.
(2)若AB=3,DH=2DF,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用32m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為252m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是17m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(m,m+1),B(m+3,m-1)是反比例函數(shù)與一次函數(shù)的交點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)請(qǐng)直接寫出當(dāng)反比例函數(shù)的函數(shù)值不大于一次函數(shù)的函數(shù)值時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩地相距90km,甲騎摩托車由A地出發(fā),去B地辦事,甲出發(fā)的同時(shí),乙騎自行車同時(shí)由B地出發(fā)沿著同一條道路前往A地,甲辦完事后原速返回A地,結(jié)果比乙早到0.5小時(shí).甲、乙兩人離A地距離y(km)與時(shí)間x(h)的函數(shù)關(guān)系圖像如圖所示.下列說(shuō)法:①.a=3.5,b=4;② 甲走的全路程是90km;③乙的平均速度是22.5km/h;.④甲在B地辦事停留了0.5小時(shí).其中正確的說(shuō)法有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線的頂點(diǎn)D的坐標(biāo)為(1,-4),且與y軸交于點(diǎn)C(0,-3).
(1)求該函數(shù)的關(guān)系式及該拋物線與x軸的交點(diǎn)A,B的坐標(biāo).
(2)請(qǐng)直接寫出△ABC的外心M的坐標(biāo).
(3)點(diǎn)E為該拋物線上一動(dòng)點(diǎn),且滿足tan∠ABE=tan∠ACB,請(qǐng)求出點(diǎn)E的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com