【題目】佳佳果品店在批發(fā)市場購買某種水果銷售,第一次用1 200元購進(jìn)若干千克,并以8元/kg出售,很快售完.由于水果暢銷,第二次購買時,每千克的進(jìn)價比第一次提高了10%,用1 452元所購買的數(shù)量比第一次多20 kg,以9元/kg售出100 kg后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價50%售完剩余的水果.
(1)第一次水果的進(jìn)價是每千克多少元?
(2)該果品店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?
【答案】(1)每千克6元;(2)盈利了,共盈利了388元
【解析】試題分析:(1)首先設(shè)第一次的單價為x元,則第二次單價為1.1x,根據(jù)數(shù)量=總價÷單價分別求出兩次的數(shù)量,然后根據(jù)第二次的數(shù)量比第一次數(shù)量多20千克列出分式方程進(jìn)行求解,最后進(jìn)行驗根;(2)分別求出兩次的盈虧情況,然后進(jìn)行合并計算.
試題解析:(1)設(shè)第一次購買的單價為x元,則第二次的單價為1.1x元,
根據(jù)題意得: =20,
解得:x=6,
經(jīng)檢驗,x=6是原方程的解,
(2)第一次購水果1200÷6=200(千克). 第二次購水果200+20=220(千克).
第一次賺錢為200×(8﹣6)=400(元).
第二次賺錢為100×(9﹣6.6)+120×(9×0.5﹣6×1.1)=﹣12(元).
所以兩次共賺錢400﹣12=388(元),
答:第一次水果的進(jìn)價為每千克6元,該老板兩次賣水果總體上是賺錢了,共賺了388元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結(jié)AE、DE、DC.
① 求證:△ABE≌△CBD;
② 若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列證明過程填空:
已知:如 圖,AD⊥BC于點D,EF⊥BC于點F,交AB于點G,交CA的延長線于點E,∠1=∠2.
求證:AD平分∠BAC,填寫證明中的空白.
證明:
∵AD⊥BC,EF⊥BC (已知),
∴EF∥AD ( ),
∴ = ( 兩直線平行,內(nèi)錯角相等 ),
=∠CAD ( ).
∵ (已知),
∴ ,即AD平分∠BAC ( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張形狀、大小和質(zhì)地完全相同的卡片,每張卡片的正面寫有一個算式.將這四張卡片背面向上洗勻,從中隨機抽取一張(不放回),接著再隨機抽取一張.則抽取的兩張卡片上的算式都正確的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從3,0,-1,-2,-3這五個數(shù)中,隨機抽取一個數(shù),作為函數(shù)y=(5-m2)x和關(guān)于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函數(shù)的圖象經(jīng)過第一、三象限,且方程有實數(shù)根的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明和小龍做轉(zhuǎn)陀螺游戲,他們同時分別轉(zhuǎn)動一個陀螺,當(dāng)兩個陀螺都停下來時,與桌面相接觸的邊上的數(shù)字都是奇數(shù)的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)我市“中國夢”“宜賓夢”主題教育活動,某中學(xué)在全校學(xué)生中開展了以“中國夢我的夢”為主題的征文比賽,評選出一、二、三等獎和優(yōu)秀獎.小明同學(xué)根據(jù)獲獎結(jié)果,繪制成如圖所示的統(tǒng)計表和數(shù)學(xué)統(tǒng)計圖.
請你根據(jù)以上圖表提供的信息,解答下列問題:
(1)a= ,b= ,n= .
(2)學(xué)校決定在獲得一等獎的作者中,隨機推薦兩名作者代表學(xué)校參加市級比賽,其中王夢、李剛都獲得一等獎,請用畫樹狀圖或列表的方法,求恰好選中這二人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列一元二次方程中,兩實根之和為1的是 ( )
A. x2—x+1=0 B. x2+x—3=0 C. 2 x2-x-1=0 D. x2-x-5=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,A(a,0),C(b,2),且滿足(a+2)2+=0,過C作CB⊥x軸于B.
(1)求三角形ABC的面積;
(2)如圖②,若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,求∠AED的度數(shù);
(3)在y軸上是否存在點P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com