如圖,CD、EF表示高度不同的兩座建筑物,小穎站在A處,正好越過前面建筑物的頂端C看到它后面的建筑物的頂端E,仰角為45°;小穎沿直線FA由點(diǎn)A后移10米到達(dá)位置點(diǎn)N,正好看到建筑物EF上的點(diǎn)M,仰角為30°.已知小穎的眼睛距離地面1.5米,CD、EF兩座建筑物間的距離為25米,求建筑物CD、EF的高(結(jié)果保留根號(hào)).
分析:設(shè)小穎的頭部為K和N,連接NK作FN的平行線交CD,EF于H,W,由已知條件可求出CH,EW分別加上小穎的眼睛距離地面1.5米,即建筑物CD、EF的高.
解答:解:設(shè)EW=x米,連接NK,作FN的平行線交CD,EF于H,W,
∴∠EKW=45°,∠MGW=30°,
由題意可知:△EWH,△CHK為等腰直角三角形,四邊形WHDF,四邊形WKAF,四邊形KGNA為矩形,
∴WK=WE=x米,
∴HK=WK-WH=(x-25)米,
∴CH=HK=(x-25)米,
∵HGHK+KG=x-25+10=(x-15)米,
∴tan30°=
CH
HG
=
x-25
x-15
=
3
3
,
∴x=(45+5
3
)米,
∴CD=CH+DH=45+5
3
-20+1.5=(26.5+5
3
)米,EF=EW+WF=45+5
3
+1.5=(46.5+5
3
)米,
答:建筑物CD、EF的高分別為(26.5+5
3
)米,(46.5+5
3
)米.
點(diǎn)評(píng):本題考查的是解直角三角形的應(yīng)用,首先構(gòu)造直角三角形,再借助角邊關(guān)系、三角函數(shù)的定義解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,CD,EF表示高度不同的兩座建筑物,已知CD高15米,小明站在A處,視線越過CD,能看到它后面的建筑物的頂端E,此時(shí)小明的視角∠FAE=45°,為了能看到建筑物EF上點(diǎn)M的位置,小明延直線FA由點(diǎn)A移動(dòng)到點(diǎn)N的位置,此時(shí)小明的視角∠FNM=30°,求AN之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)計(jì)算:|1-
3
|+20070+(
1
3
-1-2cos30°;
(2)如圖,CD,EF表示高度不同的兩座建筑物,已知CD高15米,小明站在A處,視線越過CD,能看到它后面的建筑物的頂端E,此時(shí)小明的視角∠FAE=45°,為了能看到建筑物EF上點(diǎn)M的位置,小明沿直線FA由點(diǎn)A移動(dòng)到點(diǎn)N的位置,此時(shí)小明的視角∠FNM=30°,求AN之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,CD,EF表示高度不同的兩座建筑物,已知CD高15米,小明站在A處,視線越過CD,能看到它后面的建筑物的頂端E,此時(shí)小明的視角∠FAE=45°,為了能看到建筑物EF上點(diǎn)M的位置,小明延直線FA由點(diǎn)A移動(dòng)到點(diǎn)N的位置,此時(shí)小明的視角∠FNM=30°,求AN之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省汕尾市海灣中學(xué)中考數(shù)學(xué)專題模擬試卷(四)(解析版) 題型:解答題

如圖,CD,EF表示高度不同的兩座建筑物,已知CD高15米,小明站在A處,視線越過CD,能看到它后面的建筑物的頂端E,此時(shí)小明的視角∠FAE=45°,為了能看到建筑物EF上點(diǎn)M的位置,小明延直線FA由點(diǎn)A移動(dòng)到點(diǎn)N的位置,此時(shí)小明的視角∠FNM=30°,求AN之間的距離.

查看答案和解析>>

同步練習(xí)冊答案