如圖,梯形ABCD中,AD∥BC,AB=CD,對(duì)角線AC、BD相交于O點(diǎn),且AC⊥BD,AD=3,BC=5,
求AC的長(zhǎng).

【答案】分析:首先過點(diǎn)D作AC平行線,交BC延長(zhǎng)線于點(diǎn)E,即可得四邊形ACED是平行四邊形,又由梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,即可得△BDE是等腰直角三角形,繼而可求得答案.
解答:解:過點(diǎn)D作DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E,
∵AD∥BC,
∴四邊形ACED是平行四邊形,
∴CE=AD=3,DE=AC,
∴BE=BC+CE=8,
∵梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,
∴BD=DE,BD⊥DE,
∴BD=BE=×8=4
∴AC=4
點(diǎn)評(píng):此題考查了等腰梯形的性質(zhì)、平行四邊形判定與性質(zhì)以及等腰直角三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長(zhǎng)為( 。
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點(diǎn)O,那么,圖中全等三角形共有
3
對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對(duì)角線,中位線EF交BD于O點(diǎn),若FO-EO=3,則BC-AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長(zhǎng);
(2)試在邊AB上確定點(diǎn)P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對(duì)角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案