已知等腰三角形一邊等于3,一邊等于6,則其周長等于   
【答案】分析:題目給出等腰三角形有兩條邊長為3和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應(yīng)用三角形的三邊關(guān)系驗證能否組成三角形.
解答:解:當(dāng)3為腰,6為底時,3+3=6,不能構(gòu)成等腰三角形;
當(dāng)6為腰,3為底時,3+6>6,能構(gòu)成等腰三角形,周長為3+6+6=15.
故填15.
點評:本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;求三角形的周長,不能盲目地將三邊長相加起來,而應(yīng)養(yǎng)成檢驗三邊長能否組成三角形的好習(xí)慣,把不符合題意的舍去.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、我們知道一個圖形的性質(zhì)和判定之間有著密切的聯(lián)系.比如,由等腰三角形的性質(zhì)“等邊對等角”很易得到它的判定“等角對等邊”.小明在學(xué)完“等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合”性質(zhì)后,得到如下三個猜想:
(1)如果一個三角形一邊的中線和這邊上的高相互重合,則這個三角形是等腰三角形;
(2)如果一個三角形一邊的高和這邊所對的角的平分線相互重合,則這個三角形是等腰三角形;
(3)如果一個三角形一邊的中線和這邊所對的角的平分線相互重合,則這個三角形是等腰三角形.
我們運用線段垂直平分線的性質(zhì),很易證明猜想(1)的正確性.現(xiàn)請你幫助小明判斷他的猜想(2)、(3)是否成立,若成立,請結(jié)合圖形,寫出已知、求證和證明過程;若不成立,請舉反例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:黃岡難點課課練  七年級數(shù)學(xué)下冊(北師大版) 題型:013

已知命題:①全等三角形對應(yīng)角相等;②三個角對應(yīng)相等的兩個三角形全等;③有一邊和兩角對應(yīng)相等的兩個三角形全等;④有兩邊對應(yīng)相等的兩個等腰三角形全等.其中正確命題的個數(shù)為

[  ]

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知命題:
①全等三角形對應(yīng)角相等;
②三個角對應(yīng)相等的兩個三角形全等;
③有一邊和兩角對應(yīng)相等的兩個三角形全等;
④有兩邊對應(yīng)相等的兩個等腰三角形全等.
其中正確命題的個數(shù)為


  1. A.
    4個
  2. B.
    3個
  3. C.
    2個
  4. D.
    1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們知道一個圖形的性質(zhì)和判定之間有著密切的聯(lián)系.比如,由等腰三角形的性質(zhì)“等邊對等角”很易得到它的判定“等角對等邊”.小明在學(xué)完“等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合”性質(zhì)后,得到如下三個猜想:
(1)如果一個三角形一邊的中線和這邊上的高相互重合,則這個三角形是等腰三角形;
(2)如果一個三角形一邊的高和這邊所對的角的平分線相互重合,則這個三角形是等腰三角形;
(3)如果一個三角形一邊的中線和這邊所對的角的平分線相互重合,則這個三角形是等腰三角形.
我們運用線段垂直平分線的性質(zhì),很易證明猜想(1)的正確性.現(xiàn)請你幫助小明判斷他的猜想(2)、(3)是否成立?若成立,請結(jié)合圖形,寫出已知、求證和證明過程;若不成立,請舉反例說明.

查看答案和解析>>

同步練習(xí)冊答案