【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E點(diǎn),DF⊥AC于F點(diǎn),有下列結(jié)論:①BD=DC;②DE=DF;③AD上任意一點(diǎn)到AB,AC的距離相等;④AD上任意一點(diǎn)到B點(diǎn)與C點(diǎn)的距離不等.其中正確的是( )
A. ①② B. ③④ C. ①②③ D. ①②③④
【答案】C
【解析】
根據(jù)等腰三角形“三線合一”性質(zhì)可知:AD是BC的垂直平分線,AD是∠BAC的平分線,根據(jù)垂直平分線性質(zhì)和角平分線性質(zhì)可得到答案.
因?yàn),在?/span>ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E點(diǎn),DF⊥AC于F點(diǎn),
所以,根據(jù)等腰三角形“三線合一”性質(zhì)可知:AD是BC的垂直平分線,AD是∠BAC的平分線,
所以,①BD=DC;②DE=DF;③AD上任意一點(diǎn)到AB,AC的距離相等;④AD上任意一點(diǎn)到B點(diǎn)與C點(diǎn)的距離相等.
故選:C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=50°,∠ACB=60°,點(diǎn)E在BC的延長線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點(diǎn)D,連接AD,下列結(jié)論中不正確的是( )
A. ∠BAC=70° B. ∠DOC=90° C. ∠BDC=35° D. ∠DAC=55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2﹣10x+16=0的兩個(gè)根,且拋物線的對稱軸是直線x=﹣2.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的表達(dá)式;
(3)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以O(shè)(0,0)、A(2,0)為頂點(diǎn)作正△OAP1 , 以點(diǎn)P1和線段P1A的中點(diǎn)B為頂點(diǎn)作正△P1BP2 , 再以點(diǎn)P2和線段P2B的中點(diǎn)C為頂點(diǎn)作△P2CP3 , …,如此繼續(xù)下去,則第六個(gè)正三角形中,不在第五個(gè)正三角形上的頂點(diǎn)P6的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年9月,莉莉進(jìn)入八中初一,在準(zhǔn)備開學(xué)用品時(shí),她決定購買若干個(gè)某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標(biāo)價(jià)都是20元/個(gè).甲文具店的銷售方案是:購買該筆記本的數(shù)量不超過5個(gè)時(shí),原價(jià)銷售;購買該筆記本超過5個(gè)時(shí),從第6個(gè)開始按標(biāo)價(jià)的八折出售:乙文具店的銷售方案是:不管購買多少個(gè)該款筆記本,一律按標(biāo)價(jià)的九折出售.
(1)若設(shè)莉莉要購買x(x>5)個(gè)該款筆記本,請用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購買全部該款筆記本所需的費(fèi)用;
(2)在(1)的條件下,莉莉購買多少個(gè)筆記本時(shí),到乙文具店購買全部筆記本所需的費(fèi)用與到甲文具店購買全部筆記本所需的費(fèi)用相同?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下面給出的數(shù)軸中,點(diǎn) A 表示 1,點(diǎn) B 表示-2,回答下面的問題:
(1)A、B 之間的距離是 ;
(2)觀察數(shù)軸,與點(diǎn) A 的距離為 5 的點(diǎn)表示的數(shù)是: ;
(3)若將數(shù)軸折疊,使點(diǎn) A 與-3 表示的點(diǎn)重合,則點(diǎn) B 與數(shù) 表示的點(diǎn)重合;
(4)若數(shù)軸上 M、N 兩點(diǎn)之間的距離為 2018(M 在 N 的左側(cè)),且 M、N 兩點(diǎn)經(jīng)過(3)中折 疊 后 互 相 重 合 , 則 M 、 N 兩 點(diǎn) 表 示 的 數(shù) 分 別 是 : M : ;N: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩條射線AM∥BN,線段CD的兩個(gè)端點(diǎn)C、D分別在射線BN、AM上,且∠A=∠BCD=108°.E是線段AD上一點(diǎn)(不與點(diǎn)A、D重合),且BD平分∠EBC.
(1)求∠ABC的度數(shù).
(2)請?jiān)趫D中找出與∠ABC相等的角,并說明理由.
(3)若平行移動(dòng)CD,且AD>CD,則∠ADB與∠AEB的度數(shù)之比是否隨著CD位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BD平分∠ABF,且交AE于點(diǎn)D.
(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)設(shè)AP交BD于點(diǎn)O,交BF于點(diǎn)C,連接CD,當(dāng)AC⊥BD時(shí),求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ab是新規(guī)定的一種運(yùn)算法則:ab=a2+ab,例如3(﹣2)=32+3×(﹣2)=3.
(1)求(﹣3)5的值;
(2)若(﹣2)x=6,求x的值;
(3)若3(2x)=﹣4+x,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com