【題目】小明是一名健步走運(yùn)動的愛好者,他用手機(jī)軟件記錄了他近期健步走的步數(shù)(單位:萬步),繪制出如下的統(tǒng)計(jì)圖①和統(tǒng)計(jì)圖②,請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次記錄的總天數(shù)為_____________,圖①中m的值為______________;
(Ⅱ)求小名近期健步走步數(shù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),若小明堅(jiān)持健步走一年(記為365天),試估計(jì)步數(shù)為1.1萬步的天數(shù).
【答案】(Ⅰ)25,12;(Ⅱ)平均數(shù)為1.22萬步,眾數(shù)為1.3萬步,中位數(shù)為1.2萬步;(Ⅲ)若小明堅(jiān)持健步走一年(記為365天),步數(shù)為1.1萬步的天數(shù)約為73天
【解析】
(Ⅰ)根據(jù)統(tǒng)計(jì)圖②的數(shù)據(jù)可以計(jì)算除總天數(shù),根據(jù)扇形統(tǒng)計(jì)圖的數(shù)據(jù)求出m的值.
(Ⅱ)根據(jù)數(shù)據(jù)圖分析,用步數(shù)×天數(shù)算出總步數(shù),然后再除以天數(shù)之和,可求得平均數(shù),在這組數(shù)據(jù)中,1.3出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,可求得眾數(shù),從小到大排序能得到中間的數(shù)字是1.2,可求得中位數(shù).
(Ⅲ)樣本中的數(shù)據(jù)顯示步數(shù)為1.1萬約占20%,用總天數(shù)365×20%可求得結(jié)果.
解:(Ⅰ)2+5+7+8+3=25,100-32-28-20-8=12;
(Ⅱ)∵ =;
∴ 這組數(shù)據(jù)的平均數(shù)為1.22萬步;
∵ 在這組數(shù)據(jù)中,1.3萬步出現(xiàn)了8次,出現(xiàn)的次數(shù)最多;
∴ 這組數(shù)據(jù)的眾數(shù)為1.3萬步;
∵ 將這組數(shù)據(jù)按從小到大的順序排列,其中處于中間的數(shù)是1.2萬步;
∴ 這組數(shù)據(jù)的中位數(shù)為1.2萬步;
(Ⅲ)∵在統(tǒng)計(jì)的健步走的步數(shù)樣本數(shù)據(jù)中,步數(shù)為1.1萬約占20%;
∴估計(jì)365天中,步數(shù)為1.1萬約占20%;
365×20%=73;
答:若小明堅(jiān)持健步走一年(記為365天),步數(shù)為1.1萬步的天數(shù)約為
73天.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1與x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),對稱軸為直線x=1.
(1)求點(diǎn)B的坐標(biāo)及拋物線的解析式;
(2)在直線BC上方的拋物線上有一點(diǎn)P,使△PBC的面積為1,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解游客對某景區(qū)的滿意度,特對游客采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查的結(jié)果分為A,B,C,D四類,其含意依次表示為“非常滿意”、“比較滿意”、“基本滿意”和“不太滿意”,劃分類別后的數(shù)據(jù)整理如表1(不完整).
(1)求表中的數(shù)據(jù)a和b.
(2)如果根據(jù)表中頻數(shù)畫扇形統(tǒng)計(jì)圖,那么類別為B的頻數(shù)所對應(yīng)的扇形圓心角是幾度?
(3)已知該景區(qū)每日游客限流3000名,估計(jì)一天的游客中類別C的游客人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,以點(diǎn)B為圓心,適當(dāng)長為半徑畫弧交邊于D,E兩點(diǎn)(按照A,D,E,C依次排列,且D、E不重合).過D、E分別作AB和BC的垂線段交于F、G兩點(diǎn),如果線段DF=x,EG=y,則x、y的關(guān)系式為( )
A.20x-15y=B.20x-15y=
C.15x-20y=D.15x-20y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,D是AB上一點(diǎn),已知AC=10,AC2=AD·AB.
(1)證明△ACD∽△ABC.
(2)如圖2,過點(diǎn)C作CE∥AB,且CE=6,連結(jié)DE交BC于點(diǎn)F;
①若四邊形ADEC是平行四邊形,求的值;
②設(shè)AD=x,=y,求y關(guān)于x的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=的圖像與軸的一個(gè)交點(diǎn)為A(-1,0),另一個(gè)交點(diǎn)為B,與軸交于點(diǎn)C(0,﹣3),頂點(diǎn)為D.
(1)求二次函數(shù)的解析式和點(diǎn)D的坐標(biāo);
(2)若點(diǎn)M是拋物線在軸下方圖像上的一動點(diǎn),過點(diǎn)M作MN∥軸交線段BC于點(diǎn)N,當(dāng)MN取最大值時(shí),點(diǎn)M 的坐標(biāo);
(3)將該拋物線向上或向下平移,使得新拋物線的頂點(diǎn)D落在x軸上,原拋物線上一點(diǎn)P平移后的對應(yīng)點(diǎn)為Q,如果∠OQP=∠OPQ,試求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)M是平行四邊形ABCD對角線AC所在直線上的一個(gè)動點(diǎn)(點(diǎn)M不與點(diǎn)A、C重合),分別過點(diǎn)A、C向直線BM作垂線,垂足分別為點(diǎn)E、F,點(diǎn)O為AC的中點(diǎn).
⑴如圖1,當(dāng)點(diǎn)M與點(diǎn)O重合時(shí),OE與OF的數(shù)量關(guān)系是 .
⑵直線BM繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn),且∠OFE=30°.
①如圖2,當(dāng)點(diǎn)M在線段AC上時(shí),猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?請你寫出來并加以證明;
②如圖3,當(dāng)點(diǎn)M在線段AC的延長線上時(shí),請直接寫出線段CF、AE、OE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)落在點(diǎn)處,得到,過點(diǎn)作平行于軸的直線交于點(diǎn),交軸于點(diǎn),直線交于點(diǎn).,.
(1)求經(jīng)過點(diǎn)、的反比例函數(shù)和直線:的解析式;
(2)過點(diǎn)作軸,求五邊形的面積;
(3)直接寫出當(dāng)時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸負(fù)半軸交于點(diǎn),與軸正半軸交于點(diǎn),與軸負(fù)半軸交于點(diǎn),,,.
(1)求點(diǎn)的坐標(biāo)和拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)是上一點(diǎn)(不與點(diǎn)、重合),過點(diǎn)作軸的垂線,交拋物線于點(diǎn),交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(3)設(shè)拋物線的對稱軸交軸于點(diǎn),在(2)的條件下,點(diǎn)是拋物線對稱軸上一點(diǎn),點(diǎn)是坐標(biāo)平面內(nèi)一點(diǎn),是否存在點(diǎn)、,使以、、、為頂點(diǎn)的四邊形是菱形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com