【題目】請(qǐng)你從下列條件:①AB=CD,②AD=BC,③AB∥CD,④AD∥BC中任選兩個(gè),使它們能判定四邊形ABCD是平行四邊形.共有________種情況符合要求.
【答案】四
【解析】
根據(jù)平行線(xiàn)的判定定理解答即可.
選①②,根據(jù)兩組對(duì)邊分別相等的四邊形是平行四邊形可判定;
選①③或選②④,根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可判定;
選③④,根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形可判定;
故共有四種情況符合要求.
故答案為:四
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,BC是⊙O的直徑,A是⊙O上一點(diǎn),過(guò)點(diǎn)B作⊙O的切線(xiàn),與CA的延長(zhǎng)線(xiàn)相交于點(diǎn)E,F(xiàn)是BE的中點(diǎn),延長(zhǎng)AF與CB的延長(zhǎng)線(xiàn)相交于點(diǎn)P.
(1)求證:PA是⊙O的切線(xiàn);
(2)如圖2,若AD⊥BC于點(diǎn)D,連接CF與AD相交于點(diǎn)G.求證:AG=GD;
(3)在(2)的條件下,若FG=BF,且⊙O的半徑長(zhǎng)為,求BD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在矩形ABCD中,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,∠BOC=120°,AC=6,求:
(1)AB的長(zhǎng);
(2)矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張師傅駕車(chē)從甲地到乙地,兩地相距500千米,汽車(chē)出發(fā)前油箱有油25升,途中加油若干升,加油前、后汽車(chē)都以100千米/時(shí)的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時(shí)間t(時(shí))之間的關(guān)系如圖所示.以下說(shuō)法錯(cuò)誤的是( )
A. 加油前油箱中剩余油量y(升)與行駛時(shí)間t(時(shí))之間的函數(shù)關(guān)系式是y=-8t+25
B. 途中加油21升
C. 汽車(chē)加油后還可行駛4小時(shí)
D. 汽車(chē)到達(dá)乙地時(shí)油箱中還余油6升
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x∈Z|(x+1)(x﹣4)=0},B={x|x≤a},若A∩B=A,則a的值可以是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C1:y=ax2+bx+(a≠0)經(jīng)過(guò)點(diǎn)A(-1,0)和B(3,0).
(1)求拋物線(xiàn)C1的解析式,并寫(xiě)出其頂點(diǎn)C的坐標(biāo);
(2)如圖1,把拋物線(xiàn)C1沿著直線(xiàn)AC方向平移到某處時(shí)得到拋物線(xiàn)C2,此時(shí)點(diǎn)A,C分別平移到點(diǎn)D,E處.設(shè)點(diǎn)F在拋物線(xiàn)C1上且在x軸的下方,若△DEF是以EF為底的等腰直角三角形,求點(diǎn)F的坐標(biāo);
(3)如圖2,在(2)的條件下,設(shè)點(diǎn)M是線(xiàn)段BC上一動(dòng)點(diǎn),EN⊥EM交直線(xiàn)BF于點(diǎn)N,點(diǎn)P為線(xiàn)段MN的中點(diǎn),當(dāng)點(diǎn)M從點(diǎn)B向點(diǎn)C運(yùn)動(dòng)時(shí):
①tan∠ENM的值如何變化?請(qǐng)說(shuō)明理由;
②點(diǎn)M到達(dá)點(diǎn)C時(shí),直接寫(xiě)出點(diǎn)P經(jīng)過(guò)的路線(xiàn)長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將ABCD的邊BA延長(zhǎng)到點(diǎn)E,使AE=AB,連接EC,交AD于點(diǎn)F,連接AC、ED.
(1)求證:四邊形ACDE是平行四邊形;
(2)若∠AFC=2∠B,求證:四邊形ACDE是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com