如圖,在鈍角△ABC中,AB=AC,以BC為直徑作⊙O,⊙O與BA、CA的延長線分別交于D、E兩點(diǎn)精英家教網(wǎng),連接AO、BE、DC.
(1)求證:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度數(shù).
分析:(1)根據(jù)等腰三角形性質(zhì)求出∠D=∠AOB,證△ABD∽△CBD即可;
(2)根據(jù)直徑三角形性質(zhì)求出∠DCA,根據(jù)三角形內(nèi)角和定理求出∠DAC,根據(jù)三角形外角性質(zhì)求出即可.
解答:解:(1)證明:∵AB=AC,OB=OC,
∴AO⊥BC,
∴∠AOB=90°,
∵BC是直徑,
∴∠BDC=90°=∠AOB,
∵∠ABO=∠ABO,
∴△ABD∽△CBD.

(2)∵AB=AC=2AD,
∵∠D=90°,
∴∠DCA=30°,
∴∠DAC=60°,
∵AB=AC,
∴∠ABC=∠ACB=
1
2
∠DAC=30°.
答:∠ACB的度數(shù)是30°.
點(diǎn)評:本題主要考查對三角形的內(nèi)角和定理,等腰三角形的性質(zhì),特殊角的三角函數(shù)值,含30度角的直角三角形,相似三角形的性質(zhì)和判定,三角形的外角性質(zhì)等知識點(diǎn)的理解和掌握,綜合運(yùn)用性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在鈍角△ABC中,點(diǎn)D,E分別是邊AC,BC的中點(diǎn),且DA=DE,那么下列結(jié)論錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,在鈍角△ABC中,點(diǎn)D、E分別是邊AC、BC的中點(diǎn),且DA=DE.有下列結(jié)論:①∠1=∠2;②∠1=∠3;③∠B=∠C;④∠B=∠3.其中一定正確的結(jié)論有( 。﹤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在鈍角△ABC中,∠A=30°,則tanA的值是( 。
A、
3
B、
3
2
C、
3
3
D、無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在鈍角△ABC中,AB=AC,以BC為直徑作⊙O,⊙O與BA、CA的延長線分別交于E、D兩點(diǎn),連接AO、DB、EC,試寫出圖中三對全等三角形,并對其中一對全等三角形進(jìn)行證明.

查看答案和解析>>

同步練習(xí)冊答案