12n
是整數(shù),則正整數(shù)n的最小值是(  )
分析:根據(jù)12=22×3,若
12n
是整數(shù),則12n一定是一個完全平方數(shù),據(jù)此即可求得n的值.
解答:解:∵12=22×3,
∴n的正整數(shù)值最小是3.
故選B.
點評:本題考查了二次根式的意義,正確理解12n是完全平方數(shù)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察一列數(shù)a1=3,a2=9,a3=27,a4=81,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是
3
3
;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個數(shù)列的第n項,那么a6=
36
36
,an=
3n
3n
;(可用冪的形式表示)
(2)如果想要求1+2+22+23+…+29的值,可令S10=1+2+22+23+…+29①將①式兩邊同乘以2,得
2S10=2+22+23+…+29+210
2S10=2+22+23+…+29+210
②,由②減去①式,得S10=
210-1
210-1

(3)若(1)中數(shù)列共有30項,設(shè)S30=3+9+27+81+…+a30,請利用上述規(guī)律和方法計算S30的值.
(4)設(shè)一列數(shù)1,2,4,8,…,2n-1的和為Sn,則Sn的值為
2n-1
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察一列數(shù)a1=3,a2=9,a3=27,a4=81,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是
3
3
;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個數(shù)列的第n項,那么a6=
36
36
,an=
3n
3n
;(可用冪的形式表示)
(2)如果想要求1+2+22+23+…+210的值,可令S10=1+2+22+23+…+210①將①式兩邊同乘以2,得
2S10=2+22+23+…+210+211
2S10=2+22+23+…+210+211
②,由②減去①式,得S10=
211-1
211-1

(3)若(1)中數(shù)列共有20項,設(shè)S20=3+9+27+81+…+a20,請利用上述規(guī)律和方法計算S20的值.
(4)設(shè)一列數(shù)1,
1
2
,
1
4
,
1
8
,…,
1
2n-1
的和為Sn,則Sn的值為
2-
1
2n-1
2-
1
2n-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)觀察一列數(shù)a1=3,a2=9,a3=27,a4=81,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是______;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個數(shù)列的第n項,那么a6=______,an=______;(可用冪的形式表示)
(2)如果想要求1+2+22+23+…+210的值,可令S10=1+2+22+23+…+210①將①式兩邊同乘以2,得______②,由②減去①式,得S10=______.
(3)若(1)中數(shù)列共有20項,設(shè)S20=3+9+27+81+…+a20,請利用上述規(guī)律和方法計算S20的值.
(4)設(shè)一列數(shù)1,
1
2
,
1
4
,
1
8
,…,
1
2n-1
的和為Sn,則Sn的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

12n
是整數(shù),則正整數(shù)n的最小值是( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊答案