【題目】某服裝公司的某種運(yùn)動(dòng)服每月的銷(xiāo)量與售價(jià)的關(guān)系信息如表:
售價(jià)x(元/件) | 100 | 110 | 120 | 130 | … |
月銷(xiāo)量y(件) | 200 | 180 | 160 | 140 | … |
已知該運(yùn)動(dòng)服的進(jìn)價(jià)為每件60元,設(shè)售價(jià)為x元.
(1)請(qǐng)用含x的式子表示:
①銷(xiāo)量該運(yùn)動(dòng)服每件的利潤(rùn)是 元;
②月銷(xiāo)量是y= ;(直接寫(xiě)出結(jié)果)
(2)設(shè)銷(xiāo)售該運(yùn)動(dòng)服的月利潤(rùn)為w元,那么售價(jià)為多少時(shí),當(dāng)月的利潤(rùn)最大,最大利潤(rùn)時(shí)多少?
(3)該公司決定每銷(xiāo)售一件運(yùn)動(dòng)服,就捐贈(zèng)a(a>0)元利潤(rùn)給希望工程,物價(jià)部門(mén)規(guī)定該運(yùn)動(dòng)服售價(jià)不得超過(guò)120元,設(shè)銷(xiāo)售該運(yùn)動(dòng)服的月利潤(rùn)為w元,若月銷(xiāo)售最大利潤(rùn)是8800元,求a的值.
【答案】(1)(x﹣60);﹣2x+400;(2)售價(jià)為130元時(shí),當(dāng)月的利潤(rùn)最大,最大利潤(rùn)是9800元;(3)a=10.
【解析】
(1)根據(jù)利潤(rùn)=售價(jià)﹣進(jìn)價(jià)求出利潤(rùn),運(yùn)用待定系數(shù)法求出月銷(xiāo)量;
(2)根據(jù)月利潤(rùn)=每件的利潤(rùn)×月銷(xiāo)量列出函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)求出最大利潤(rùn);
(3)根據(jù)題意得到函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.
(1)①銷(xiāo)售該運(yùn)動(dòng)服每件的利潤(rùn)是(x﹣60)元;
②設(shè)月銷(xiāo)量y與x的關(guān)系式為y=kx+b,
由題意得,,
解得,,
∴y=﹣2x+400;
(2)由題意得,w=(x﹣60)(﹣2x+400)
=﹣2x2+520x﹣24000
=﹣2(x﹣130)2+9800,
∴售價(jià)為130元時(shí),當(dāng)月的利潤(rùn)最大,最大利潤(rùn)是9800元;
(3)根據(jù)題意得,w=(x﹣60﹣a)(﹣2x+400)=﹣2x2+(520+2a)x﹣24000﹣400a,
∵對(duì)稱(chēng)軸x=,
∴①當(dāng)<120時(shí)(舍),②當(dāng)≥120時(shí),x=120時(shí),w求最大值8800,
解得:a=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠C = 90°,AD是∠BAC的角平分線(xiàn).
(1)請(qǐng)尺規(guī)作圖:作⊙O,使圓心O在AB上,且A點(diǎn)在圓⊙O上.(不寫(xiě)作法,保留作圖痕跡);
(2)判斷直線(xiàn)BC與所作⊙O的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABCD中頂點(diǎn)A坐標(biāo)(0,6),頂點(diǎn)B坐標(biāo)(-2,0),頂點(diǎn)C坐標(biāo)(8,0),點(diǎn)E為平行四邊形ABCD的對(duì)角線(xiàn)的交點(diǎn),求過(guò)點(diǎn)E且到點(diǎn)C的距離最大的直線(xiàn)解析式____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,,將斜邊BC繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)至BD,使,,過(guò)點(diǎn)D作,于點(diǎn)E.
(1)求證;
(2)若,,求在上述旋轉(zhuǎn)過(guò)程中,線(xiàn)段BC掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(概念認(rèn)知):
城市的許多街道是相互垂直或平行的,因此,往往不能沿直線(xiàn)行走到達(dá)目的地,只能按直角拐彎的方式行走.可以按照街道的垂直和平行方向建立平面直角坐標(biāo)系xOy,對(duì)兩點(diǎn)A(,)和B(,),用以下方式定義兩點(diǎn)間距離:d(A,B)=+.
(數(shù)學(xué)理解):
(1)①已知點(diǎn)A(﹣2,1),則d(O,A)= ;②函數(shù)(0≤x≤2)的圖像如圖①所示,B是圖像上一點(diǎn),d(O,B)=3,則點(diǎn)B的坐標(biāo)是 .
(2)函數(shù)(x>0)的圖像如圖②所示,求證:該函數(shù)的圖像上不存在點(diǎn)C,使d(O,C)=3.
(3)函數(shù)(x≥0)的圖像如圖③所示,D是圖像上一點(diǎn),求d(O,D)的最小值及對(duì)應(yīng)的點(diǎn)D的坐標(biāo).
(問(wèn)題解決):
(4)某市要修建一條通往景觀湖的道路,如圖④,道路以M為起點(diǎn),先沿MN方向到某處,再在該處拐一次直角彎沿直線(xiàn)到湖邊,如何修建能使道路最短?(要求:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,畫(huà)出示意圖并簡(jiǎn)要說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在的網(wǎng)格圖中,每個(gè)小正方形的邊長(zhǎng)均為,點(diǎn)和的頂點(diǎn)均為小正方形的頂點(diǎn).
(1)以點(diǎn)O為位似中心,在網(wǎng)格圖中作△ABC,使它與△ABC位似,且相似比為2;
(2)如圖②,某臺(tái)風(fēng)過(guò)后,李明發(fā)現(xiàn)一棵被吹傾斜的大樹(shù)與地面的夾角為,且其影子長(zhǎng)為4.5米,同時(shí)李明還發(fā)現(xiàn)大樹(shù)樹(shù)干和影子形成的△DEF與△ABC相似(樹(shù)干對(duì)應(yīng)邊),求大樹(shù)在被吹傾斜前的高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的半徑為4,AB,AC是⊙O的兩條條弦,AB=,點(diǎn)O到AC的距離為,試求出∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.
(1)求證: BE=CF;
(2)請(qǐng)?zhí)骄啃D(zhuǎn)角等于多少度時(shí),四邊形ABDF為菱形,證明你的結(jié)論;
(3)在(2)的條件下,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校計(jì)劃開(kāi)設(shè)四門(mén)選修課:樂(lè)器、舞蹈、繪畫(huà)、書(shū)法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門(mén)).對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中,m的值是 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書(shū)法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書(shū)法活動(dòng),請(qǐng)直接寫(xiě)出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com