【題目】如圖,在RtABC中,∠ACB=90°,B=60°,BC=2,A′B′C可以由ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( 。

A. 6 B. 4 C. 3 D. 3

【答案】A

【解析】

由已知條件易得AB=2BC=4,∠BAC=30°,結(jié)合旋轉(zhuǎn)的性質(zhì)可得:∠A′B′C=∠ABC=60°,A′B′=AB=4,∠A′=∠BAC=30°,A′C=AC,由此可得∠A′AC=∠A′=30°,結(jié)合∠B′AC+∠B′CA=∠A′B′C=60°可得∠B′CA=30°=∠A′AC,由此可得AB′=B′C=BC=2,從而可得A′B=A′B′+AB′=4=2=6.

RtABC中,∠ACB=90°,B=60°,

∴∠BAC=30°,

∴AB=2BC=4,

∵△A′B′C是由△ABC繞點(diǎn)C旋轉(zhuǎn)得到的,

∴∠A′=∠BAC=30°,A′B′=AB=4,B′C=BC=2,∠A′B′C=∠B=60°,A′C=AC,

∵A、B′、A′在同一條直線上,

∠A′AC=∠A′=30°,

又∵∠B′AC+∠B′CA=∠A′B′C=60°,

∴∠B′CA=30°=∠A′AC,

AB′=B′C=2,

∴A′B=A′B′+AB′=4=2=6.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,A=36°,AB=AC,CD、BE分別是∠ACB,∠ABC的平分線,CD、BE相交于F點(diǎn),連接DE,則圖中全等的三角形有多少組( 。

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建立模型:

如圖1,已知ABC,AC=BC,C=90°,頂點(diǎn)C在直線l上.

操作:

過點(diǎn)A作ADl于點(diǎn)D,過點(diǎn)B作BEl于點(diǎn)E.求證:CAD≌△BCE

模型應(yīng)用:

(1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,將直線l1繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.

(2)如圖3,在直角坐標(biāo)系中,點(diǎn)B(8,6),作BAy軸于點(diǎn)A,作BCx軸于點(diǎn)C,P是線段BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q(a,2a﹣6)位于第一象限內(nèi).問點(diǎn)A、P、Q能否構(gòu)成以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,若能,請求出此時(shí)a的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了選拔學(xué)生參加“漢字聽寫大賽”,對九年級一班、二班各10名學(xué)生進(jìn)行漢字聽寫測試,計(jì)分采用10分制(得分均取整數(shù)),成績達(dá)到6分或6分以上為及格,達(dá)到9分或10分為優(yōu)秀,成績?nèi)绫?所示,并制作了成績分析表(表2)

表1

 一班

5

8

8

9

8

10

10

8

5

5

 二班

10

6

6

9

10

4

5

7

10

8

表2

班級

平均數(shù)

中位數(shù)

眾數(shù)

方差

及格率

優(yōu)秀率

一班

7.6

8

a

3.82

70%

30%

二班

b

c

10

4.94

80%

40% 

(1)求表2中,a,b,c;

(2)有人說二班的及格率、優(yōu)秀率均高于一班,所以二班成績比一班成績好;但也有人堅(jiān)定認(rèn)為一班成績比二班成績好.請你給出支持一班成績好的兩條理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫度的變化是人們在生活中經(jīng)常談?wù)摰脑掝},請你根據(jù)下圖回答下列問題:

(1)上午9時(shí)的溫度是多少?這一天的最高溫度是多少?

(2)這一天的溫差是多少?從最低溫度到最高溫度經(jīng)過了多長時(shí)間?

(3)在什么時(shí)間范圍內(nèi)溫度在下降?圖中的A點(diǎn)表示的是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間的甲、乙兩名工人分別同時(shí)生產(chǎn)同種零件,他們一天生產(chǎn)零件y(個(gè))與生產(chǎn)時(shí)間t(小時(shí))的關(guān)系如圖所示.

(1)根據(jù)圖象回答:

①甲、乙中,誰先完成一天的生產(chǎn)任務(wù);在生產(chǎn)過程中,誰因機(jī)器故障停止生產(chǎn)多少小時(shí);

②當(dāng)t等于多少時(shí),甲、乙所生產(chǎn)的零件個(gè)數(shù)相等;

(2)誰在哪一段時(shí)間內(nèi)的生產(chǎn)速度最快?求該段時(shí)間內(nèi),他每小時(shí)生產(chǎn)零件的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說法正確的是( 。

A. 若AD⊥BC,則四邊形AEDF是矩形

B. 若AD垂直平分BC,則四邊形AEDF是矩形

C. 若BD=CD,則四邊形AEDF是菱形

D. 若AD平分∠BAC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,CAB=500,C=600,求DAE和BOA的度數(shù)。

查看答案和解析>>

同步練習(xí)冊答案