在邊長(zhǎng)為1的正方形網(wǎng)格中有A、B、C、D、E五個(gè)點(diǎn),問(wèn)△ABC與△ADE是否相似?為什么?由此,你還能找出圖中相似的三角形嗎?若能,請(qǐng)找出來(lái),并說(shuō)明理由.

解:AB==,BC=10,AC==,
AE=2,AD=,DE==,CE==,
BD==,
===
===,
∴△ABC∽△ADE,△ABD∽△ACE.
分析:根據(jù)勾股定理分別計(jì)算AB、BC、AC、AE、AD、DE、CE、BD的長(zhǎng)度,根據(jù)對(duì)應(yīng)邊比值相等的性質(zhì)可以判定△ABC∽△ADE,△ABD∽△ACE即可解題.
點(diǎn)評(píng):本題考查了相似三角形的判定,考查了相似三角形對(duì)應(yīng)邊比值相等的性質(zhì),考查了勾股定理在直角三角形中的運(yùn)用,本題中根據(jù)勾股定理計(jì)算各邊的長(zhǎng)度是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,A、B均在邊長(zhǎng)為1的正方形網(wǎng)格格點(diǎn)上.
(1)求線段AB所在直線的函數(shù)解析式,并寫出當(dāng)0≤y≤2時(shí),自變量x的取值范圍;
(2)將線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到線段BC,請(qǐng)?jiān)诖痤}卡指定位置畫出線段BC.若直線BC的函數(shù)解析式為y=kx+b,則y隨x的增大而
 
(填“增大”或“減小”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,A、B均在邊長(zhǎng)為1的正方形網(wǎng)格格點(diǎn)上.
(1)若點(diǎn)P在圖中所給網(wǎng)格中的格點(diǎn)上,△APB是等腰三角形,滿足條件的點(diǎn)P共有
4
4
個(gè).
(2)將線段AB沿x軸向右平移2格得線段CD,請(qǐng)你求出線段CD所在的直線函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,A、B、C、D均在邊長(zhǎng)為1的正方形網(wǎng)格格點(diǎn)上.
(1)求線段AB所在直線的解析式,并寫出當(dāng)0≤y≤2時(shí),自變量x的取值范圍;
(2)若把直線y=kx+b中的k叫做直線的斜率,那么直線AB和直線AD的斜率有什么關(guān)系?直線AB和直線CD的斜率有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,A、B均在邊長(zhǎng)為1的正方形網(wǎng)格格點(diǎn)上.

1.求線段AB所在直線的函數(shù)關(guān)系式,并寫出當(dāng)0≤y≤2時(shí),自變量x的取值范圍;

2.將線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到線段BC,若直線BC的函數(shù)關(guān)系式為y=kx+b,則y隨x的增大而      (填“增大”或“減小”).

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖8,在平面直角坐標(biāo)系中,、均在邊長(zhǎng)為1的正方形網(wǎng)格格點(diǎn)上.

(1)求線段所在直線的函數(shù)解析式,并寫出當(dāng)時(shí),自變量的取值范圍;

(2)將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到線段,請(qǐng)?jiān)谥付ㄎ恢卯嫵鼍段.若直線的函數(shù)解析式為,則的增大而             (填“增大”或“減小”).

查看答案和解析>>

同步練習(xí)冊(cè)答案