已知關(guān)于x的一元二次方程x2+kx-3=0.
(1)求證:不論k為何實(shí)數(shù),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)當(dāng)k=2時(shí),用配方法解此一元二次方程.
【答案】分析:(1)要證明方程總有兩個(gè)不相等的實(shí)數(shù)根,只要說明△>0即可.
(2)當(dāng)k=2時(shí),原方程即x2+2x-3=0,首先移項(xiàng),把常數(shù)項(xiàng)移到等號(hào)的右邊,然后在方程的兩邊同時(shí)加上一次項(xiàng)系數(shù)的一半,則方程左邊就是完全平方式,右邊是0,即可利用開平方法求解.
解答:(1)證明:∵a=1,b=k,c=-3,
∴△=k2-4×1×(-3)=k2+12,
∵不論k為何實(shí)數(shù),k2≥0,
∴k2+12>0,即△>0,
因此,不論k為何實(shí)數(shù),方程總有兩個(gè)不相等的實(shí)數(shù)根.
(2)解:當(dāng)k=2時(shí),原一元二次方程即x2+2x-3=0,
∴x2+2x+1=4,
∴(x+1)2=4,
∴x+1=2或x+1=-2,
∴此時(shí)方程的根為x1=1,x2=-3.
點(diǎn)評:本題是對根的判別式和配方法的綜合試題,考查了對根的判別式與配方法的應(yīng)用,同時(shí)也考查了非負(fù)數(shù)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2+(2k-3)x+k2=0的兩個(gè)實(shí)數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2-6x+k+1=0的兩個(gè)實(shí)數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《一元二次方程》中考題集(23):23.3 實(shí)踐與探索(解析版) 題型:解答題

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習(xí)冊答案